
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #8 SOLUTIONS

(1) Consider a ferromagnetic spin-S Ising model on a lattice of coordination number z.
The Hamiltonian is

Ĥ = −J
∑

〈ij〉
σi σj − µ0H

∑

i

σi ,

where σ ∈ {−S,−S + 1, . . . ,+S} with 2S ∈ Z.

(a) Find the mean field Hamiltonian Ĥ
MF

.

(b) Adimensionalize by setting θ ≡ k
B
T/zJ , h ≡ µ0H/zJ , and f ≡ F/NzJ . Find the

dimensionless free energy per site f(m,h) for arbitrary S.

(c) Expand the free energy as

f(m,h) = f0 + 1

2
am2 + 1

4
bm4 − chm + O(h2, hm3,m6)

and find the coefficients f0, a, b, and c as functions of θ and S.

(d) Find the critical point (θc, hc).

(e) Find m(θc, h) to leading order in h.

Solution :

(a) Writing σi = m + δσi, we find

Ĥ
MF

= 1

2
NzJm2 − (µ0H + zJ)

∑

i

σi .

(b) Using the result
S

∑

σ=−S

eβµ
0
H

eff
σ =

sinh
(

(S + 1

2
)βµ0H

)

sinh
(

1

2
βµ

0
H

) ,

we have

f = 1

2
m2 − θ ln sinh

(

(2S + 1)(m + h)/2θ
)

+ θ ln sinh
(

(m + h)/2θ
)

.

(c) Expanding the free energy, we obtain

f = f0 + 1

2
am2 + 1

4
bm4 − chm + O(h2, hm3,m6)

= −θ ln(2S + 1) +

(

3θ − S(S + 1)

6θ

)

m2 +
S(S + 1)(2S2 + 2S + 1)

360 θ3
m4 − 2

3
S(S + 1)hm + . . . .
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Thus,

f0 = −θ ln(2S+1) , a = 1−1

3
S(S+1)θ−1 , b =

S(S + 1)(2S2 + 2S + 1)

90 θ3
, c = 2

3
S(S+1) .

(d) Set a = 0 and h = 0 to find the critical point: θc = 1

3
S(S + 1) and hc = 0.

(e) At θ = θc, we have f = f0 + 1

4
bm4 − chm + O(m6). Extremizing with respect to m, we

obtain m = (ch/b)1/3. Thus,

m(θc, h) =

(

60

2S2 + 2S + 1

)1/3

θ h1/3 .

(2) The Blume-Capel model is a S = 1 Ising model described by the Hamiltonian

Ĥ = −1

2

∑

i,j

Jij Si Sj + ∆
∑

i

S2
i ,

where Jij = J(Ri − Rj) and Si ∈ {−1, 0,+1}. The mean field theory for this model is
discussed in section 7.11 of the Lecture Notes, using the ’neglect of fluctuations’ method.
Consider instead a variational density matrix approach. Take ̺(S1, . . . , SN ) =

∏

i ˜̺(Si),
where

˜̺(S) =

(

n + m

2

)

δS,+1 + (1 − n) δS,0 +

(

n − m

2

)

δS,−1 .

(a) Find 〈1〉, 〈Si〉, and 〈S2
i 〉.

(b) Find E = Tr (̺H).

(c) Find S = −k
B
Tr (̺ ln ̺).

(d) Adimensionalizing by writing θ = k
B
T/Ĵ(0), δ = ∆/Ĵ(0), and f = F/NĴ(0), find

the dimensionless free energy per site f(m,n, θ, δ).

(e) Write down the mean field equations.

(f) Show that m = 0 always permits a solution to the mean field equations, and find
n(θ, δ) when m = 0.

(g) To find θc, set m = 0 but use both mean field equations. You should recover eqn.
7.322 of the Lecture Notes.

(h) Show that the equation for θc has two solutions for δ < δ∗ and no solutions for δ > δ∗,
and find the value of δ∗.1

1This problem has been corrected: (θ
∗
, δ

∗
) is not the tricritical point.
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(i) Assume m2 ≪ 1 and solve for n(m, θ, δ) using one of the mean field equations. Plug
this into your result for part (d) and obtain an expansion of f in terms of powers of
m2 alone. Find the first order line. You may find it convenient to use Mathematica

here.

Solution :

(a) From the given expression for ˜̺, we have

〈1〉 = 1 , 〈S〉 = m , 〈S2〉 = n ,

where 〈A〉 = Tr(˜̺A).

(b) From the results of part (a), we have

E = Tr(˜̺Ĥ)

= −1

2
NĴ(0)m2 + N∆ n ,

assuming Jii = 0 for al i.

(c) The entropy is

S = −k
B
Tr (̺ ln ̺)

= −Nk
B

{

(

n − m

2

)

ln

(

n − m

2

)

+ (1 − n) ln(1 − n) +

(

n + m

2

)

ln

(

n + m

2

)

}

.

(d) The dimensionless free energy is given by

f(m,n, θ, δ) = −1

2
m2+δn+θ

{

(

n − m

2

)

ln

(

n − m

2

)

+(1−n) ln(1−n)+

(

n + m

2

)

ln

(

n + m

2

)

}

.

(e) The mean field equations are

0 =
∂f

∂m
= −m + 1

2
θ ln

(

n − m

n + m

)

0 =
∂f

∂n
= δ + 1

2
θ ln

(

n2 − m2

4 (1 − n)2

)

.

These can be rewritten as

m = n tanh(m/θ)

n2 = m2 + 4 (1 − n)2 e−2δ/θ .
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(f) Setting m = 0 solves the first mean field equation always. Plugging this into the second
equation, we find

n =
2

2 + exp(δ/θ)
.

(g) If we set m → 0 in the first equation, we obtain n = θ, hence

θc =
2

2 + exp(δ/θc)
.

(h) The above equation may be recast as

δ = θ ln

(

2

θ
− 2

)

with θ = θc. Differentiating, we obtain

∂δ

∂θ
= ln

(

2

θ
− 2

)

− 1

1 − θ
=⇒ θ =

δ

δ + 1
.

Plugging this into the result for part (g), we obtain the relation δ eδ+1 = 2, and numerical
solution yields the maximum of δ(θ) as

θ∗ = 0.3164989 . . . , δ = 0.46305551 . . . .

This is not the tricritical point.

(i) Plugging in n = m/ tanh(m/θ) into f(n,m, θ, δ), we obtain an expression for f(m, θ, δ),
which we then expand in powers of m, obtaining

f(m, θ, δ) = f0 + 1

2
am2 + 1

4
bm4 + 1

6
cm6 + O(m8) .

We find

a =
2

3θ

{

δ − θ ln

(

2(1 − θ)

θ

)

}

b =
1

45 θ3

{

4(1 − θ) θ ln

(

2(1 − θ)

θ

)

+ 15θ2 − 5θ + 4δ(θ − 1)

}

c =
1

1890 θ5(1 − θ)2

{

24 (1 − θ)2 θ ln

(

2(1 − θ)

θ

)

+ 24δ(1 − θ)2 + θ
(

35 − 154 θ + 189 θ2
)

}

.

The tricritical point occurs for a = b = 0, which yields

θt = 1

3
, δt = 2

3
ln 2 .
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If, following Landau, we consider terms only up through order m6, we predict a first order
line given by the solution to the equation

b = − 4√
3

√
ac .

The actual first order line is obtained by solving for the locus of points (θ, δ) such that
f(m, θ, δ) has a degenerate minimum, with one of the minima at m = 0 and the other at
m = ±m0. The results from Landau theory will coincide with the exact mean field solution
at the tricritical point, where the m0 = 0, but in general the first order lines obtained by the
exact mean field theory solution and by a truncated sixth order Landau expansion of the
free energy will differ.
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