PHYSICS 210A : STATISTICAL PHYSICS HW ASSIGNMENT #7 SOLUTIONS

(1) For each of the two cluster diagrams in Fig. 1, find the symmetry factor s_γ and write an expression for the cluster integral $b_\gamma(T).$

Figure 1: Mayer cluster expansion diagrams.

Solution :

The symmetry factors of the diagrams are $s_a = 2 \cdot (3!)^2 = 72$ and $s_b = 6! = 720$. To see this, note that sites 2, 3, and 4 and sites 5, 6, and 7 of figure 1a can be separately permuted in any of $3! = 6$ ways, and finally that the two triples themselves can be swapped to give a final factor of 2. For figure 1b, the sites $\{2, 3, 4, 5, 6, 7\}$ can be permuted in any way. One then has

$$
b_{\mathbf{a}} = \frac{1}{72V} \int \prod_{i=1}^{8} d^d x_i f_{12} f_{13} f_{14} f_{23} f_{24} f_{34} \cdot f_{78} f_{68} f_{58} f_{67} f_{57} f_{56} \cdot f_{18}
$$

$$
b_{\mathbf{b}} = \frac{1}{720V} \int \prod_{i=1}^{7} d^d x_i f_{12} f_{13} f_{14} f_{15} f_{16} f_{17} .
$$

Figure 2: Labeled Mayer cluster expansion diagrams.

(2) Consider the one-dimensional Ising model with next-nearest neighbor interactions,

$$
\hat{H} = -J\sum_{n} \sigma_n \sigma_{n+1} - K \sum_{n} \sigma_n \sigma_{n+2} ,
$$

on a ring with N sites, where N is even. By considering consecutive pairs of sites, show that the partition function may be written in the form $Z = \text{Tr}(R^{N/2})$, where R is a 4×4 transfer matrix. Find R . Hint: It may be useful to think of the system as a railroad trestle, depicted in Fig. 2, with Hamiltonian

$$
\hat{H} = -\sum_{j} \left[J \sigma_j \mu_j + J \mu_j \sigma_{j+1} + K \sigma_j \sigma_{j+1} + K \mu_j \mu_{j+1} \right].
$$

Then $R = R_{(\sigma_j \mu_j), (\sigma_{j+1} \mu_{j+1})'}$ with $(\sigma \mu)$ a composite index which takes one of four possible values (++), (+−), (−+), or (−−).

Figure 3: Railroad trestle representation of next-nearest neighbor chain.

Solution :

The transfer matrix can be read off from the Hamiltonian:

$$
R_{(\sigma\mu),(\sigma'\mu')} = e^{\beta J\mu(\sigma+\sigma')} e^{\beta K(\sigma\sigma'+\mu\mu')}.
$$

Expressed as a matrix of rank four, with rows and columns corresponding to $\{+, +-, -+, --\}$, we have $-28K$ $\sqrt{ }$

$$
R = \begin{pmatrix} e^{2\beta(J+K)} & e^{2\beta J} & 1 & e^{-2\beta K} \\ e^{-2\beta J} & e^{-2\beta(J-K)} & e^{-2\beta K} & 1 \\ 1 & e^{-2\beta K} & e^{-2\beta(J-K)} & e^{-2\beta J} \\ e^{-2\beta K} & 1 & e^{2\beta J} & e^{2\beta(J+K)} \end{pmatrix}.
$$

Querying WolframAlpha for the eigenvalues, we find

$$
\lambda_1 = \frac{1}{2} \left[uv - (1 + u^{-1}) \sqrt{u^2 v^2 - 2uv^2 + 4u + v^2} + 2v^{-1} + u^{-1} v \right]
$$

\n
$$
\lambda_2 = \frac{1}{2} \left[uv + (1 + u^{-1}) \sqrt{u^2 v^2 - 2uv^2 + 4u + v^2} + 2v^{-1} + u^{-1} v \right]
$$

\n
$$
\lambda_3 = \frac{1}{2} \left[uv - (1 - u^{-1}) \sqrt{u^2 v^2 + 2uv^2 - 4u + v^2} - 2v^{-1} + u^{-1} v \right]
$$

\n
$$
\lambda_4 = \frac{1}{2} \left[uv + (1 - u^{-1}) \sqrt{u^2 v^2 + 2uv^2 - 4u + v^2} - 2v^{-1} + u^{-1} v \right]
$$

where $u = e^{2\beta J}$ and $v = e^{2\beta K}$. The partition function on a ring of N sites, with N even, is

,

$$
Z = \text{Tr}(R^{N/2}) = \lambda_1^{N/2} + \lambda_2^{N/2} + \lambda_3^{N/2} + \lambda_4^{N/2}.
$$