PHYSICS 210A : STATISTICAL PHYSICS HW ASSIGNMENT #4 SOLUTIONS

(1) A strange material obeys the equation of state $E(S, V, N) = a S^7 / V^4 N^2$, where *a* is a dimensionful constant.

- (a) What are the SI dimensions of *a*?
- (b) Find the equation of state relating p, T, and n = N/V.
- (c) Find the coefficient of thermal expansion $\alpha_p = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p$ and the isothermal compressibility $\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_T$. Express your answers in terms of p and T.
- (d) ν moles of this material execute a Carnot cycle between reservoirs at temperatures T_1 and T_2 . Find the heat Q and work W for each leg of the cycle, and find the cycle efficiency η .

Solution :

(a) Clearly $[a] = K^7 m^{12}/J^2$ where K are Kelvins, m are meters, and J are Joules.

(b) We have

$$T = + \left(\frac{\partial E}{\partial S}\right)_{V,N} = \frac{7aS^6}{N^2V^4}$$
$$p = - \left(\frac{\partial E}{\partial V}\right)_{S,N} = \frac{4aS^7}{N^2V^5}.$$

We must eliminate *S*. Dividing the second of these equations by the first, we find S = 7pV/4T, and substituting this into either equation, we obtain the equation of state,

$$p = c \cdot \left(\frac{N}{V}\right)^{1/3} T^{7/6} ,$$

with $c = \frac{6}{7^{7/6}}a^{-1/6}$.

(c) Taking the logarithm and then the differential of the above equation of state, we have

$$\frac{dp}{p} + \frac{dV}{3V} - \frac{7\,dT}{6T} - \frac{dN}{3N} = 0$$

Thus,

$$\alpha_p = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p,N} = \frac{7}{2T} \qquad , \qquad \kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{T,N} = \frac{3}{p} \; .$$

Figure 1: The Carnot cycle.

(d) From the results of part (b), we have that dS = 0 means $d(N^2V^4T) = 0$, so with N constant the equation for adiabats is $d(TV^4) = 0$. Thus, for the Carnot cycle of Fig. 1, we have

$$T_2 V_{\mathsf{A}}^4 = T_1 V_{\mathsf{D}}^4 \qquad , \qquad T_2 V_{\mathsf{B}}^4 = T_1 V_{\mathsf{C}}^4 \; .$$

We shall use this relation in due time. Another relation we shall use is obtained by dividing out the S^7 factor common in the expressions for E and for p, then substituting for p using the equation of state:

$$E = \frac{1}{4}pV = \frac{1}{4}c N^{1/3} V^{2/3} T^{7/6}$$

AB: Consider the AB leg of the Carnot cycle. We use the equation of state along the isotherm to find V

$$W_{\mathsf{A}\mathsf{B}} = \int_{V_{\mathsf{A}}}^{V_{\mathsf{B}}} dV \, p = \frac{3}{2} c \, N^{1/3} \, T_2^{7/6} \left(V_{\mathsf{B}}^{2/3} - V_{\mathsf{A}}^{2/3} \right) \,.$$

Since *E* depends on volume, unlike the case of the ideal gas, there is a change in energy along this leg:

$$(\Delta E)_{\mathsf{A}\mathsf{B}} = E_{\mathsf{B}} - E_{\mathsf{A}} = \frac{1}{4}c \, N^{1/3} \, T_2^{7/6} \left(V_{\mathsf{B}}^{2/3} - V_{\mathsf{A}}^{2/3} \right)$$

Finally, the heat absorbed by the engine material during this leg is

$$Q_{\mathsf{A}\mathsf{B}} = (\Delta E)_{\mathsf{A}\mathsf{B}} + W_{\mathsf{A}\mathsf{B}} = \frac{7}{4}c\,N^{1/3}\,T_2^{7/6} \left(V_{\mathsf{B}}^{2/3} - V_{\mathsf{A}}^{2/3}\right)\,.$$

BC: Next, consider the BC leg. Clearly $Q_{\sf BC} = 0$ since BC is an adiabat. Thus,

$$W_{\mathsf{BC}} = -(\Delta E)_{\mathsf{BC}} = E_{\mathsf{B}} - E_{\mathsf{C}} = \frac{1}{4}c \, N^{1/3} \left(T_2^{7/6} \, V_{\mathsf{B}}^{2/3} - T_1^{7/6} \, V_{\mathsf{C}}^{2/3} \right) \,.$$

But the fact that BC is an adiabat guarantees $V_{\rm C}^{2/3}=(T_2/T_1)^{1/6}\,V_{\rm B}^{2/3}$, hence

$$W_{\mathsf{BC}} = \frac{1}{4} c \, N^{1/3} \, V_{\mathsf{B}}^{2/3} \, T_2^{1/6} (T_2 - T_1) \,.$$

CD: For the CD leg, we can apply the results from AB, mutatis mutandis. Thus,

$$W_{\rm CD} = \frac{3}{2} c \, N^{1/3} \, T_2^{7/6} \left(V_{\rm D}^{2/3} - V_{\rm C}^{2/3} \right) \,.$$

We now use the adiabat conditions $V_{C}^{2/3} = (T_2/T_1)^{1/6} V_{B}^{2/3}$ and $V_{D}^{2/3} = (T_2/T_1)^{1/6} V_{A}^{2/3}$ to write W_{CD} as

$$W_{\rm CD} = \frac{3}{2} c N^{1/3} T_1 T_2^{1/6} \left(V_{\rm A}^{2/3} - V_{\rm B}^{2/3} \right) \,.$$

We therefore have

$$Q_{\rm CD} = \frac{7}{4} c \, N^{1/3} \, T_1 \, T_2^{1/6} \left(V_{\rm A}^{2/3} - V_{\rm B}^{2/3} \right) \,.$$

Note that both W_{CD} and Q_{CD} are negative.

DA: We apply the results from the BC leg, *mutatis mutandis*, and invoke the adiabat conditions. We find $Q_{\text{DA}} = 0$ and

$$W_{\mathsf{DA}} = rac{1}{4} c \, N^{1/3} \, V_\mathsf{A}^{2/3} \, T_2^{1/6} (T_2 - T_1) \; .$$

For the cycle, we therefore have

$$W_{\rm cyc} = W_{\rm AB} + W_{\rm BC} + W_{\rm CD} + W_{\rm DA} = \frac{7}{4}c N^{1/3} T_2^{1/6} (T_2 - T_1) \left(V_{\rm B}^{2/3} - V_{\rm A}^{2/3} \right) \,.$$

and thus

$$\eta = \frac{W_{\rm cyc}}{Q_{\rm AB}} = 1 - \frac{T_1}{T_2} \; . \label{eq:gamma_state}$$

This is the same result as for an ideal gas, as must be the case as per the Second Law of Thermodynamics.

(2) The entropy of a thermodynamic system S(E, V, N) is given by

$$S(E, V, N) = r E^{\alpha} V^{\beta} N^{\gamma} ,$$

where r is a dimensionful constant.

(a) Extensivity of *S* imposes a condition on (α, β, γ) . Find this constraint.

(b) Even with the extensivity condition satisfied, the system may violate one or more stability criteria. Find the general conditions on (α, β, γ) which are thermodynamically permissible.

Solution :

(a) Clearly we must have $\alpha + \beta + \gamma = 1$ in order for *S* to be extensive.

(b) The Hessian is

$$Q = \frac{\partial^2 S}{\partial X_i \partial X_j} = \begin{pmatrix} \alpha(\alpha-1) S/E^2 & \alpha\beta S/EV & \alpha\gamma S/EN \\ \alpha\beta S/EV & \beta(\beta-1) S/V^2 & \beta\gamma S/VN \\ \alpha\gamma S/EN & \beta\gamma S/VN & \gamma(\gamma-1) S/N^2 \end{pmatrix} .$$

As shown in the notes, for any 2×2 submatrix of Q, obtained by eliminating a single row and its corresponding column, and written $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$, we must have a < 0, c < 0, and $ac > b^2$. For example, if we take the upper left 2×2 submatrix, obtained by eliminating the third row and third column of Q, we have $a = \alpha(\alpha - 1)S/E^2$, $b = \alpha\beta S/EV$, and $c = \beta(\beta - 1)S/V^2$. The condition a < 0 requires $\alpha \in (0, 1)$. Similarly, $\beta < 0$ requires $\beta \in (0, 1)$. Finally, $ac > b^2$ requires $\alpha + \beta < 1$. Since $\alpha + \beta + \gamma = 1$, this last condition requires $\gamma > 0$. Obviously we must have $\gamma < 1$ as well, else either α or β would have to be negative. An examination of either of the other two submatrices yields the same conclusions. Thus,

$$\alpha \in (0,1) \qquad , \qquad \beta \in (0,1) \qquad , \qquad \gamma \in (0,1) \ .$$

(3) For an ideal gas, find the difference $C_{\varphi} - C_V$ for the following functions φ . You are to assume *N* is fixed in each case.

- (a) $\varphi(p,V) = p^3 V^2$
- (b) $\varphi(p,T) = p e^{T/T_0}$
- (c) $\varphi(T, V) = VT^{-1}$

Solution :

In general,

$$C_{\varphi} = T \left(\frac{\partial S}{\partial T} \right)_{\varphi} \; .$$

Note that

$$dQ = dE + p \, dV \, .$$

We will also appeal to the ideal gas law, $pV = Nk_{\rm B}T$. Below, we shall abbreviate $\varphi_V = \frac{\partial \varphi}{\partial V}$, $\varphi_T = \frac{\partial \varphi}{\partial T}$, and $\varphi_p = \frac{\partial \varphi}{\partial p}$.

(a) We have

$$dQ = \frac{1}{2} f N k_{\rm B} \, dT + p \, dV \,,$$

and therefore

$$C_{\varphi} - C_V = p \left(\frac{\partial V}{\partial T}\right)_{\varphi}$$
.

Now for a general function $\varphi(p, V)$, we have

$$\begin{split} d\varphi &= \varphi_p \, dp + \varphi_V \, dV \\ &= \frac{Nk_{\rm B}}{V} \, \varphi_p \, dT + \left(\varphi_V - \frac{p}{V} \, \varphi_p\right) dV \,, \end{split}$$

after writing $dp = d(Nk_{\rm \scriptscriptstyle B}T/V)$ in terms of dT and dV. Setting $d\varphi = 0$, we then have

$$C_{\varphi} - C_{V} = p \left(\frac{\partial V}{\partial T}\right)_{\varphi} = \frac{Nk_{\rm B} p \,\varphi_{p}}{p \,\varphi_{p} - V \varphi_{V}} \,.$$

This is the general result. For $\varphi(p, V) = p^3 V^2$, we find

$$C_{\varphi} - C_V = 3Nk_{\rm B}$$

(b) We have

$$dQ = \left(\frac{1}{2}f + 1\right)Nk_{\rm B}\,dT - Vdp\,,$$

and therefore

$$C_{\varphi} - C_V = Nk_{\rm B} - V\left(\frac{\partial p}{\partial T}\right)_{\varphi}$$

For a general function $\varphi(p, T)$, we have

Therefore,

$$C_{\varphi} - C_V = Nk_{\rm B} + V \, \frac{\varphi_T}{\varphi_p} \; . \label{eq:constraint}$$

This is the general result. For $\varphi(p,T) = p \ e^{T/T_0}$, we find

$$C_{\varphi} - C_V = N k_{\rm B} \left(1 + \frac{T}{T_0} \right) \,. \label{eq:constraint}$$

(c) We have

$$C_{\varphi} - C_V = p \left(\frac{\partial V}{\partial T}\right)_{\varphi} \,,$$

as in part (a). For a general function $\varphi(T, V)$, we have

$$d\varphi = \varphi_T \, dT + \varphi_V \, dV \quad \Longrightarrow \quad \left(\frac{\partial V}{\partial T}\right)_{\varphi} = -\frac{\varphi_T}{\varphi_V} \,,$$

and therefore

$$C_{\varphi} - C_V = -p \, \frac{\varphi_T}{\varphi_V} \, . \label{eq:constraint}$$

This is the general result. For $\varphi(T, V) = V/T$, we find

$$C_{\varphi} - C_V = Nk_{\rm B}$$

(4) Find an expression for the energy density $\varepsilon = E/V$ for a system obeying the Dieterici equation of state,

$$p(V - Nb) = Nk_{\rm B}T \, e^{-Na/Vk_{\rm B}T} \,,$$

where *a* and *b* are constants. Your expression for $\varepsilon(v, T)$ should involve an integral which can be expressed in terms of the exponential integral,

$$\mathsf{Ei}(x) = \int_{-\infty}^{x} dt \, \frac{e^t}{t} \, .$$

Solution :

We have

$$\left(\frac{\partial E}{\partial V}\right)_{T,N} = T \left(\frac{\partial S}{\partial V}\right)_{T,N} - p = T \left(\frac{\partial p}{\partial T}\right)_{V,N} - p,$$

where we have invoked a Maxwell relation. For the Dieterici equation of state, then,

$$\left(\frac{\partial E}{\partial V}\right)_{\!T,N} = \frac{Nk_{\rm\scriptscriptstyle B}T}{V-Nb}\cdot \frac{Na}{Vk_{\rm\scriptscriptstyle B}T}\cdot e^{-Na/Vk_{\rm\scriptscriptstyle B}T} \,. \label{eq:eq:electropy}$$

Let n = N/V be the density and $\varepsilon = E/N$ be the energy per particle. Then the above result is equivalent to

$$\frac{\partial \varepsilon}{\partial n} = -\frac{a}{1-bn} e^{-na/k_{\rm B}T} \,.$$

We integrate this between n = 0 and n, with bn < 1. Define the dimensionless quantity $\lambda = a/bk_{\rm B}T$ and $t = \lambda(1 - bn)$. Then

$$\varepsilon(n,T) - \varepsilon(0,T) = -\frac{a e^{-\lambda}}{b} \int_{(1-bn)\lambda}^{\lambda} \frac{dt}{t} e^{t} = \left\{ \mathsf{Ei}\big((1-bn)\lambda\big) - \mathsf{Ei}(\lambda) \right\} \frac{a e^{-\lambda}}{b}$$

In the zero density limit, the gas must be ideal, in which case $\varepsilon(0,T) = \frac{1}{2}fk_{\rm B}T$. Thus,

$$\varepsilon(n,T) = \frac{1}{2}fk_{\rm B}T - \left\{ {\rm Ei}\bigg(\frac{(1-bn)a}{bk_{\rm B}T}\bigg) - {\rm Ei}\bigg(\frac{a}{bk_{\rm B}T}\bigg) \right\} \cdot \frac{a\,e^{-a/bk_{\rm B}T}}{b} \,.$$

In terms of the volume per particle, write v = V/N = 1/n.