
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #4 SOLUTIONS

(1) A strange material obeys the equation of state E(S, V,N) = aS7/V 4N2, where a is a
dimensionful constant.

(a) What are the SI dimensions of a?

(b) Find the equation of state relating p, T , and n = N/V .

(c) Find the coefficient of thermal expansion αp = 1
V

(

∂V
∂T

)

p
and the isothermal compress-

ibility κT = −
1
V

(

∂V
∂p

)

T
. Express your answers in terms of p and T .

(d) ν moles of this material execute a Carnot cycle between reservoirs at temperatures
T1 and T2. Find the heat Q and work W for each leg of the cycle, and find the cycle
efficiency η.

Solution :

(a) Clearly [a] = K7 m12/J2 where K are Kelvins, m are meters, and J are Joules.

(b) We have

T = +

(

∂E

∂S

)

V,N

=
7aS6

N2V 4

p = −

(

∂E

∂V

)

S,N

=
4aS7

N2V 5
.

We must eliminate S. Dividing the second of these equations by the first, we find S =
7pV/4T , and substituting this into either equation, we obtain the equation of state,

p = c ·

(

N

V

)1/3

T 7/6 ,

with c = 6
77/6

a−1/6.

(c) Taking the logarithm and then the differential of the above equation of state, we have

dp

p
+

dV

3V
−

7 dT

6T
−

dN

3N
= 0 .

Thus,

αp =
1

V

(

∂V

∂T

)

p,N

=
7

2T
, κT = −

1

V

(

∂V

∂p

)

T,N

=
3

p
.
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Figure 1: The Carnot cycle.

(d) From the results of part (b), we have that dS = 0 means d(N2V 4T ) = 0, so with N
constant the equation for adiabats is d(TV 4) = 0. Thus, for the Carnot cycle of Fig. 1, we
have

T2 V 4
A = T1 V 4

D , T2 V 4
B = T1 V 4

C .

We shall use this relation in due time. Another relation we shall use is obtained by dividing
out the S7 factor common in the expressions for E and for p, then substituting for p using
the equation of state:

E = 1
4pV = 1

4cN1/3 V 2/3 T 7/6 .

AB: Consider the AB leg of the Carnot cycle. We use the equation of state along the
isotherm to find

WAB =

V
B

∫

V
A

dV p = 3
2cN1/3 T

7/6
2

(

V
2/3
B − V

2/3
A

)

.

Since E depends on volume, unlike the case of the ideal gas, there is a change in energy
along this leg:

(∆E)AB = EB − EA = 1
4cN1/3 T

7/6
2

(

V
2/3
B − V

2/3
A

)

.

Finally, the heat absorbed by the engine material during this leg is

QAB = (∆E)AB + WAB = 7
4cN1/3 T

7/6
2

(

V
2/3
B − V

2/3
A

)

.
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BC: Next, consider the BC leg. Clearly QBC = 0 since BC is an adiabat. Thus,

WBC = −(∆E)BC = EB − EC = 1
4cN1/3

(

T
7/6
2 V

2/3
B − T

7/6
1 V

2/3
C

)

.

But the fact that BC is an adiabat guarantees V
2/3
C = (T2/T1)

1/6 V
2/3
B , hence

WBC = 1
4cN1/3 V

2/3
B T

1/6
2 (T2 − T1) .

CD: For the CD leg, we can apply the results from AB, mutatis mutandis. Thus,

WCD = 3
2cN1/3 T

7/6
2

(

V
2/3
D − V

2/3
C

)

.

We now use the adiabat conditions V
2/3
C = (T2/T1)

1/6 V
2/3
B and V

2/3
D = (T2/T1)

1/6 V
2/3
A to

write WCD as

WCD = 3
2cN1/3 T1 T

1/6
2

(

V
2/3
A − V

2/3
B

)

.

We therefore have
QCD = 7

4cN1/3 T1 T
1/6
2

(

V
2/3
A − V

2/3
B

)

.

Note that both WCD and QCD are negative.

DA: We apply the results from the BC leg, mutatis mutandis, and invoke the adiabat condi-
tions. We find QDA = 0 and

WDA = 1
4cN1/3 V

2/3
A T

1/6
2 (T2 − T1) .

For the cycle, we therefore have

Wcyc = WAB + WBC + WCD + WDA = 7
4cN1/3 T

1/6
2 (T2 − T1)

(

V
2/3
B − V

2/3
A

)

.

and thus

η =
Wcyc

QAB

= 1 −
T1

T2

.

This is the same result as for an ideal gas, as must be the case as per the Second Law of
Thermodynamics.

(2) The entropy of a thermodynamic system S(E,V,N) is given by

S(E,V,N) = r Eα V β Nγ ,

where r is a dimensionful constant.

(a) Extensivity of S imposes a condition on (α, β, γ). Find this constraint.
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(b) Even with the extensivity condition satisfied, the system may violate one or more sta-
bility criteria. Find the general conditions on (α, β, γ) which are thermodynamically
permissible.

Solution :

(a) Clearly we must have α + β + γ = 1 in order for S to be extensive.

(b) The Hessian is

Q =
∂2S

∂Xi ∂Xj

=





α(α − 1)S/E2 αβ S/EV αγ S/EN
αβ S/EV β(β − 1)S/V 2 βγ S/VN
αγ S/EN βγ S/VN γ(γ − 1)S/N2



 .

As shown in the notes, for any 2 × 2 submatrix of Q, obtained by eliminating a single

row and its corresponding column, and written

(

a b
b c

)

, we must have a < 0, c < 0, and

ac > b2. For example, if we take the upper left 2 × 2 submatrix, obtained by eliminating
the third row and third column of Q, we have a = α(α − 1)S/E2, b = αβ S/EV , and
c = β(β − 1)S/V 2. The condition a < 0 requires α ∈ (0, 1). Similarly, β < 0 requires
β ∈ (0, 1). Finally, ac > b2 requires α + β < 1. Since α + β + γ = 1, this last condition
requires γ > 0. Obviously we must have γ < 1 as well, else either α or β would have
to be negative. An examination of either of the other two submatrices yields the same
conclusions. Thus,

α ∈ (0, 1) , β ∈ (0, 1) , γ ∈ (0, 1) .

(3) For an ideal gas, find the difference Cϕ − CV for the following functions ϕ. You are to
assume N is fixed in each case.

(a) ϕ(p, V ) = p3 V 2

(b) ϕ(p, T ) = p eT/T
0

(c) ϕ(T, V ) = V T−1

Solution :

In general,

Cϕ = T

(

∂S

∂T

)

ϕ

.

Note that
d̄Q = dE + p dV .
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We will also appeal to the ideal gas law, pV = Nk
B
T . Below, we shall abbreviate ϕV = ∂ϕ

∂V ,

ϕT = ∂ϕ
∂T , and ϕp = ∂ϕ

∂p .

(a) We have
d̄Q = 1

2fNk
B

dT + p dV ,

and therefore

Cϕ − CV = p

(

∂V

∂T

)

ϕ

.

Now for a general function ϕ(p, V ), we have

dϕ = ϕp dp + ϕV dV

=
Nk

B

V
ϕp dT +

(

ϕV −
p

V
ϕp

)

dV ,

after writing dp = d(Nk
B
T/V ) in terms of dT and dV . Setting dϕ = 0, we then have

Cϕ − CV = p

(

∂V

∂T

)

ϕ

=
Nk

B
p ϕp

p ϕp − V ϕV

.

This is the general result. For ϕ(p, V ) = p3V 2, we find

Cϕ − CV = 3Nk
B

.

(b) We have
d̄Q =

(

1
2f + 1

)

Nk
B

dT − V dp ,

and therefore

Cϕ − CV = Nk
B
− V

(

∂p

∂T

)

ϕ

.

For a general function ϕ(p, T ), we have

dϕ = ϕp dp + ϕT dT =⇒

(

∂p

∂T

)

ϕ

= −
ϕT

ϕp

.

Therefore,

Cϕ − CV = Nk
B

+ V
ϕT

ϕp

.

This is the general result. For ϕ(p, T ) = p eT/T
0 , we find

Cϕ − CV = Nk
B

(

1 +
T

T0

)

.

(c) We have

Cϕ − CV = p

(

∂V

∂T

)

ϕ

,
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as in part (a). For a general function ϕ(T, V ), we have

dϕ = ϕT dT + ϕV dV =⇒

(

∂V

∂T

)

ϕ

= −
ϕT

ϕV

,

and therefore

Cϕ − CV = −p
ϕT

ϕV

.

This is the general result. For ϕ(T, V ) = V/T , we find

Cϕ − CV = Nk
B

.

(4) Find an expression for the energy density ε = E/V for a system obeying the Dieterici
equation of state,

p(V − Nb) = Nk
B
T e−Na/V k

B
T ,

where a and b are constants. Your expression for ε(v, T ) should involve an integral which
can be expressed in terms of the exponential integral,

Ei(x) =

x
∫

−∞

dt
et

t
.

Solution :

We have
(

∂E

∂V

)

T,N

= T

(

∂S

∂V

)

T,N

− p = T

(

∂p

∂T

)

V,N

− p ,

where we have invoked a Maxwell relation. For the Dieterici equation of state, then,
(

∂E

∂V

)

T,N

=
Nk

B
T

V − Nb
·

Na

V k
B
T

· e−Na/V k
B

T .

Let n = N/V be the density and ε = E/N be the energy per particle. Then the above result
is equivalent to

∂ε

∂n
= −

a

1 − bn
e−na/k

B
T .

We integrate this between n = 0 and n, with bn < 1. Define the dimensionless quantity
λ = a/bk

B
T and t = λ(1 − bn). Then

ε(n, T ) − ε(0, T ) = −
a e−λ

b

λ
∫

(1−bn)λ

dt

t
et =

{

Ei
(

(1 − bn)λ
)

− Ei(λ)
}a e−λ

b

In the zero density limit, the gas must be ideal, in which case ε(0, T ) = 1
2fk

B
T . Thus,

ε(n, T ) = 1
2fk

B
T −

{

Ei

(

(1 − bn)a

bk
B
T

)

− Ei

(

a

bk
B
T

)

}

·
a e−a/bk

B
T

b
.

In terms of the volume per particle, write v = V/N = 1/n.
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