
PHYSICS 210A : STATISTICAL PHYSICS

HW ASSIGNMENT #2 SOLUTIONS

(1) Compute the density of states D(E,V,N) for a three-dimensional gas of particles with

Hamiltonian Ĥ =
∑N

i=1 A |pi|
4, where A is a constant. Find the entropy S(E,V,N), the

Helmholtz free energy F (T, V,N), and the chemical potential µ(T, p).

Solution :

Let’s solve the problem for a general dispersion ε(p) = A|p|α. The density of states is

D(E,V,N) =
V N

N !

∫
ddp1

hd
· · ·

∫
ddpN

hd
δ
(
E − Apα

1 − . . . − Apα
N

)
.

The Laplace transform is

D̂(β, V,N) =
V N

N !

(∫
ddp

hd
e−βApα

)N

=
V N

N !

(
Ωd

hd

∞∫

0

dp pd−1 e−βApα

)N

=
V N

N !

(
Ωd Γ(d/α)

αhdAd/α

)N
β−Nd/α .

Now we inverse transform, recalling

K(E) =
Et−1

Γ(t)
⇐⇒ K̂(β) = β−t .

We then conclude

D(E,V,N) =
V N

N !

(
Ωd Γ(d/α)

αhdAd/α

)N E
Nd
α

−1

Γ(Nd/α)

and

S(E,V,N) = kB lnD(E,V,N)

= NkB ln

(
V

N

)
+

d

α
NkB ln

(
E

N

)
+ NkBa0 ,

where a0 is a constant, and we take the thermodynamic limit N → ∞ with V/N and E/N
fixed. From this we obtain the differential relation

dS =
NkB

V
dV +

d

α

NkB

E
dE + s0 dN

=
p

T
dV +

1

T
dE −

µ

T
dN ,

where s0 is a constant. From the coefficients of dV and dE, we conclude

pV = NkBT

E =
d

α
NkBT .
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Note that we have replaced E = d
α NkBT in order to express F in terms of its ’natural

variables’ T , V , and N .

The Helmholtz free energy is

F = E − TS = E − NkBT ln

(
V

N

)
−

d

α
NkBT ln

(
E

N

)
− NkBTa0

=
d

α
NkBT −

d

α
NkBT ln

(
d

α
kBT

)
− NkBT ln

(
V

N

)
− NkBTa0 .

The chemical potential is

µ = T

(
∂F

∂N

)

T,V

= −
d

α
kBT ln

(
d

α
kBT

)
+

d

α
kBT − kBT ln

(
V

N

)
+ (1 − a0) kBT

= −
d

α
kBT ln

(
d

α
kBT

)
+

d

α
kBT − kBT ln

(
kBT

p

)
+ (1 − a0) kBT .

Suppose we wanted the heat capacities CV and Cp. Setting dN = 0, we have

d̄Q = dE + p dV

=
d

α
NkB dT + p dV

=
d

α
NkB dT + p d

(
NkBT

p

)
.

Thus,

CV =
d̄Q

dT

∣∣∣∣
V

=
d

α
NkB , Cp =

d̄Q

dT

∣∣∣∣
p

=

(
1 +

d

α

)
NkB .

(2) Consider a gas of classical spin-3
2 particles, with Hamiltonian

Ĥ =

N∑

i=1

p
2
i

2m
− µ0H

∑

i

Sz
i ,

where Sz
i ∈

{
− 3

2 ,−1
2 ,+1

2 ,+3
2

}
and H is the external magnetic field. Find the Helmholtz

free energy F (T, V,H,N), the entropy S(T, V,H,N), and the magnetic susceptibility χ(T,H, n),
where n = N/V is the number density.

Solution :

The partition function is

Z = Tr e−Ĥ/kBT =
1

N !

V N

λdN
T

(
2 cosh(µ0H/2kBT ) + 2 cosh(3µ0H/2kBT )

)N
,
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so

F = −NkBT ln

(
V

Nλd
T

)
− NkBT − NkBT ln

(
2 cosh(µ0H/2kBT ) + 2 cosh(3µ0H/2kBT )

)
,

where λT =
√

2π~2/mkBT is the thermal wavelength. The entropy is

S = −

(
∂F

∂T

)

V,N,H

= NkB ln

(
V

Nλd
T

)
+ (1

2d + 1)NkB + N ln
(
2 cosh(µ0H/2kBT ) + 2 cosh(3µ0H/2kBT )

)

−
µ0H

2T
·
sinh(µ0H/2kBT ) + 3 sinh(3µ0H/2kBT )

cosh(µ0H/2kBT ) + cosh(3µ0H/2kBT )
.

The magnetization is

M = −

(
∂F

∂H

)

T,V,N

= 1
2Nµ0 ·

sinh(µ0H/2kBT ) + 3 sinh(3µ0H/2kBT )

cosh(µ0H/2kBT ) + cosh(3µ0H/2kBT )
.

The magnetic susceptibility is

χ(T,H, n) =
1

V

(
∂M

∂H

)

T,V,N

=
nµ2

0

4kBT
f(µ0H/2kBT )

where

f(x) =
d

dx

(
sinhx + 3 sinh(3x)

cosh x + cosh(3x)

)
.

In the limit H → 0, we have f(0) = 5, so χ = 4nµ2
0/4kBT at high temperatures. This is a

version of Curie’s law.

(3) Compute the RMS volume fluctuations in the T − p − N ensemble.

Solution :

Averages within the T − p − N ensemble are computed by

〈A〉 =
Tr Ae−β(Ĥ+pV )

Tr e−β(Ĥ+pV )
.

Let Y = Tr
−β(Ĥ+pV ) = e−βG. Then

〈V 2〉 =
1

β2Y

∂2Y

∂p2
= β−2 eβG ∂2

∂p2
e−βG

= −
1

β

∂2G

∂p2
+

(
∂G

∂p

)2
,

and since ∂G
∂p = V , we have

〈V 2〉 − 〈V 〉2 = −kBT
∂2G

∂p2
.
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For the case of a nonrelativistic ideal gas, we have

〈V k〉 =

∞∫

0

dV e−βpV Z(T, V,N)V k

/ ∞∫

0

dV e−βpV Z(T, V,N)

=

∞∫

0

dV e−βpV V N+k

/ ∞∫

0

dV e−βpV V N =
(N + k)!

N !

(
kBT

p

)k

,

since Z(T, V,N) = 1
N !(V/λT )N . Thus,

〈V 〉 = (N + 1)
kBT

p
, 〈V 2〉 = (N + 1)(N + 2)

(
kBT

p

)2

and therefore

V 2
rms = 〈V 2〉 − 〈V 〉2 = (N + 1)

(
kBT

p

)2

⇒ Vrms = N1/2 kBT

p
.

Thus Vrms/〈V 〉 = N−1/2 ≪ 1. This is, once again, the Central Limit Theorem in action.

(4) For the system described in problem (1), compute the distribution of speeds f̄(v). Find
the most probable speed, the mean speed, and the RMS speed.

Solution :

Again, we solve for the general case ε(p) = Apα. The momentum distribution is

g(p) = C e−βApα
,

where C is a normalization constant, defined so that
∫
ddp g(p) = 1. Changing variables to

t ≡ βApα, we find

C =
α (βA)

d
α

Ωd Γ
(

d
α

) .

The velocity v is given by

v =
∂ε

∂p
= αApα−1

p̂ .

Thus, the speed distribution is given by

f̄(v) = C

∫
ddp e−βApα

δ
(
v − αApα−1

)
.

Now

δ
(
v − αApα−1

)
=

δ
(
p − (v/αA)1/(α−1)

)

α(α − 1)Apα−2
.
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We therefore have

f̄(v) =
C

α(α − 1)A
pd−α+1 e−βApα

∣∣∣∣
p=(v/αA)1/(α−1)

.

We can now calculate

〈vr〉 = C

∫
ddp e−βApα(

αApα−1
)r

,

and so

‖v‖r = 〈vr〉1/r = αAα−1
(kBT )1−α−1

(
Γ
(

d−r
α + r

)

Γ
(

d
α

)
)1/α

.

To find the most probable speed, we extremize f̄(v). We obtain

βApα =
d − α + 1

α
,

which means

v = αA

(
d − α + 1

αβA

)1−α−1

= (αA)α
−1

(d − α + 1)1−α−1
(kBT )1−α−1

.

5


