PHYSICS 210A : STATISTICAL PHYSICS FINAL EXAMINATION All parts are worth 5 points each

(1) [40 points total] Consider a noninteracting gas of bosons in d dimensions. Let the single particle dispersion be $\varepsilon(\mathbf{k}) = A |\mathbf{k}|^{\sigma}$, where $\sigma > 0$.

- (a) Find the single particle density of states per unit volume $g(\varepsilon)$. Show that $g(\varepsilon) = C \varepsilon^{p-1} \Theta(\varepsilon)$, and find *C* and *p* in terms of *A*, *d*, and σ . You may abbreviate the total solid angle in *d* dimensions as $\Omega_d = 2\pi^{d/2}/\Gamma(d/2)$.
- (b) Under what conditions will there be a finite temperature $T_{\rm c}$ for Bose condensation?
- (c) For $T > T_c$, find an expression for the number density n(T, z). You may find the following useful:

$$\int_{0}^{\infty} d\varepsilon \, \frac{\varepsilon^{q-1}}{z^{-1} e^{\beta \varepsilon} - 1} = \Gamma(q) \, \beta^{-q} \operatorname{Li}_{q}(z) \; ,$$

where $\operatorname{Li}_q(z) = \sum_{j=1}^{\infty} z^j / j^q$ is the polylogarithm function. Note that $\operatorname{Li}_q(1) = \zeta(q)$.

- (d) Assuming $T_{\rm c} > 0$, find an expression for $T_{\rm c}(n)$.
- (e) For $T < T_c$, find an expression for the condensate number density $n_0(T, n)$.
- (f) For $T < T_{c'}$ compute the molar heat capacity at constant volume and particle number $c_{V,N}(T,n)$. Recall that $c_{V,N} = \frac{N_A}{N} \left(\frac{\partial E}{\partial T}\right)_{V,N}$.
- (g) For $T > T_c$, compute the molar heat capacity at constant volume and particle number $c_{V,N}(T,z)$.
- (h) Show that under certain conditions the heat capacity is discontinuous at T_c , and evaluate $c_{V,N}(T_c^{\pm})$ just above and just below the transition.
- (2) [30 points total] Consider the following model Hamiltonian,

$$\hat{H} = \sum_{\langle ij \rangle} E(\sigma_i, \sigma_j) \;,$$

where each σ_i may take on one of three possible values, and

$$E(\sigma, \sigma') = \begin{pmatrix} -J & +J & 0 \\ +J & -J & 0 \\ 0 & 0 & +K \end{pmatrix} ,$$

with J > 0 and K > 0. Consider a variational density matrix $\varrho_v(\sigma_1, \ldots, \sigma_N) = \prod_i \tilde{\varrho}(\sigma_i)$, where the normalized single site density matrix has diagonal elements

$$\tilde{\varrho}(\sigma) = \left(\frac{n+m}{2}\right)\delta_{\sigma,1} + \left(\frac{n-m}{2}\right)\delta_{\sigma,2} + (1-n)\,\delta_{\sigma,3}\,.$$

- (a) What is the global symmetry group for this Hamiltonian?
- (b) Evaluate $E = \text{Tr} (\rho_v \hat{H}).$
- (c) Evaluate $S = -k_{\rm B} \operatorname{Tr} (\varrho_{\rm v} \ln \varrho_{\rm v})$.
- (d) Adimensionalize by writing $\theta = k_{\rm B}T/zJ$ and c = K/J, where *z* is the lattice coordination number. Find $f(n, m, \theta, c) = F/NzJ$.
- (e) Find all the mean field equations.
- (f) Find an equation for the critical temperature $\theta_{c'}$ and show graphically that it has a unique solution.

(3) [30 points total] Provide clear, accurate, and brief answers for each of the following:

- (a) Explain what is meant by (i) recurrent, (ii) ergodic, and (iii) mixing phase flows.
- (b) Why is it more accurate to compute response functions $\chi_{ij} = \partial m_i / \partial H_j$ rather than correlation functions $C_{ij} = \langle \sigma_i \sigma_j \rangle \langle \sigma_i \rangle \langle \sigma_j \rangle$ in mean field theory? What is the exact thermodynamic relationship between χ_{ij} and C_{ij} ?
- (c) What is a tricritical point?
- (d) Sketch what the radial distribution function g(r) looks like for a simple fluid like liquid Argon. Identify any relevant length scales, as well as the proper limiting value for $g(r \to \infty)$.
- (e) Discuss the First Law of Thermodynamics from the point of view of statistical mechanics.
- (f) Explain what is meant by the Dulong-Petit limit of the heat capacity of a solid.