PHYSICS 210A : STATISTICAL PHYSICS HW ASSIGNMENT #3

(1) Consider an ultrarelativistic ideal gas in three space dimensions. The dispersion is $\varepsilon(\mathbf{p}) = pc$.

- (a) Find *E*, *T*, *p*, and μ within the microcanonical ensemble (variables *S*, *V*, *N*).
- (b) Find F, S, p, and μ within the ordinary canonical ensemble (variables T, V, N).
- (c) Find Ω , S, p, and N within the grand canonical ensemble (variables T, V, μ).
- (d) Find G, S, V, and μ within the Gibbs ensemble (variables T, p, N).
- (e) Find H, T, V, and μ within the *S*-*p*-*N* ensemble. Here H = E + pV is the enthalpy.

(2) Consider a surface containing N_s adsorption sites which is in equilibrium with a twocomponent nonrelativistic ideal gas containing atoms of types A and B. (Their respective masses are m_A and m_B). Each adsorption site can be in one of three possible states: (i) vacant, (ii) occupied by an A atom, with energy $-\Delta_A$, and (ii) occupied with a B atom, with energy $-\Delta_B$.

- (a) Find the grand partition function for the surface, $\Xi_{surf}(T, \mu_A, \mu_B, N_s)$.
- (b) Suppose the number densities of the gas atoms are n_A and n_B . Find the fraction $f_A(n_A, n_B, T)$ of adsorption sites with A atoms, and the fraction $f_0(n_A, n_B, T)$ of adsorption sites which are vacant.

(3) Consider a system composed of spin tetramers, each of which is described by the Hamiltonian

$$H = -J(\sigma_1\sigma_2 + \sigma_1\sigma_3 + \sigma_1\sigma_4 + \sigma_2\sigma_3 + \sigma_2\sigma_4 + \sigma_3\sigma_4) - \mu_0H(\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4).$$

The individual tetramers are otherwise noninteracting.

- (a) Find the single tetramer partition function ζ .
- (b) Find the magnetization per tetramer $m = \mu_0 \langle \sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 \rangle$.
- (c) Suppose the tetramer number density is n_t . The magnetization density is $M = n_t m$. Find the zero field susceptibility $\chi(T) = (\partial M / \partial H)_{H=0}$.