
PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #1 SOLUTIONS

(1) Consider the contraption in Fig. 1. At each of k steps, a particle can fork to either the
left (nj = 1) or to the right (nj = 0). The final location is then a k-digit binary number.

(a) Assume the probability for moving to the left is p and the probability for moving to
the right is q ≡ 1 − p at each fork, independent of what happens at any of the other
forks. I.e. all the forks are uncorrelated. Compute 〈Xk〉. Hint: Xk can be represented

as a k-digit binary number, i.e. Xk = nk−1nk−2 · · ·n1n0 =
∑k−1

j=0 2jnj .

(b) Compute 〈X2
k〉 and the variance 〈X2

k〉 − 〈Xk〉2.

(c) Xk may be written as the sum of k random numbers. Does Xk satisfy the central
limit theorem as k → ∞? Why or why not?

Figure 1: Generator for a k-digit random binary number (k = 4 shown).

Solution :

(a) The position after k forks can be written as a k-digit binary number: nk−1nk−2 · · ·n1n0.
Thus,

Xk =

k−1
∑

j=0

2j nj ,

where nj = 0 or 1 according to Pn = p δn,1 + q δn,0. Now it is clear that 〈nj〉 = p, and

1



therefore

〈Xk〉 = p

k−1
∑

j=0

2j = p ·
(

2k − 1
)

.

(b) The variance in Xk is

Var(Xk) = 〈X2
k〉 − 〈Xk〉2 =

k−1
∑

j=0

k−1
∑

j′=0

2j+j′
(

〈njnj′〉 − 〈nj〉〈nj′〉
)

= p(1 − p)

k−1
∑

j=0

4j = p(1 − p) · 1
3

(

4k − 1
)

,

since 〈njnj′〉 − 〈nj〉〈nj′〉 = p(1 − p) δjj′ .

(c) Clearly the distribution of Xk does not obey the CLT, since 〈Xk〉 scales exponentially
with k. Also note

lim
k→∞

√

Var(Xk)

〈Xk〉
=

√

1 − p

3p
,

which is a constant. For distributions obeying the CLT, the ratio of the rms fluctuations
to the mean scales as the inverse square root of the number of trials. The reason that this
distribution does not obey the CLT is that the variance of the individual terms is increasing
with j.

(2) Let P (x) = (2πσ2)−1/2 e−(x−µ)2/2σ2

. Compute the following integrals:

(a) I =
∞
∫

−∞

dx P (x)x3.

(b) I =
∞
∫

−∞

dx P (x) cos(Qx).

(c) I =
∞
∫

−∞

dx
∞
∫

−∞

dy P (x)P (y) exy . You may set µ = 0 to make this somewhat simpler.

Under what conditions does this expression converge?

Solution :

(a) Write
x3 = (x − µ + µ)3 = (x − µ)3 + 3(x − µ)2µ + 3(x − µ)µ2 + µ3 ,

so that

〈x3〉 =
1√

2πσ2

∞
∫

−∞

dt e−t2/2σ2
{

t3 + 3t2µ + 3tµ2 + µ3
}

.
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Since exp(−t2/2σ2) is an even function of t, odd powers of t integrate to zero. We have
〈t2〉 = σ2, so

〈x3〉 = µ3 + 3µσ2 .

A nice trick for evaluating 〈t2k〉:

〈t2k〉 =

∞
∫

−∞

dt e−λt2 t2k

∞
∫

−∞

dt e−λt2
=

(−1)k dk

dλk

∞
∫

−∞

dt e−λt2

∞
∫

−∞

dt e−λt2
=

(−1)k√
λ

dk
√

λ

dλk

∣

∣

∣

∣

∣

λ=1/2σ2

= 1
2 · 3

2 · · ·
(2k−1)

2 λ−k
∣

∣

λ=1/2σ2
=

(2k)!

2k k!
σ2k .

(b) We have

〈cos(Qx)〉 = Re 〈eiQx〉 = Re

[

eiQµ

√
2πσ2

∞
∫

−∞

dt e−t2/2σ2

eiQt

]

= Re

[

eiQµ e−Q2σ2/2
]

= cos(Qµ) e−Q2σ2/2 .

Here we have used the result

1√
2πσ2

∞
∫

−∞

dt e−αt2−βt =

√

π

α
eβ2/4α

with α = 1/2σ2 and β = −iQ. Another way to do it is to use the general result derive
above in part (a) for 〈t2k〉 and do the sum:

〈cos(Qx)〉 = Re 〈eiQx〉 = Re

[

eiQµ

√
2πσ2

∞
∫

−∞

dt e−t2/2σ2

eiQt

]

= cos(Qµ)

∞
∑

k=0

(−Q2)k

(2k)!
〈t2k〉 = cos(Qµ)

∞
∑

k=0

1

k!

(

− 1
2Q2σ2

)k

= cos(Qµ) e−Q2σ2/2 .

(c) We have

I =

∞
∫

−∞

dx

∞
∫

−∞

dy P (x)P (y) eκ2xy =
e−µ2/2σ2

2πσ2

∫

d2x e−
1

2
Aij xi xj ebi xi ,

where x = (x, y),

A =

(

σ2 −κ2

−κ2 σ2

)

, b =

(

µ/σ2

µ/σ2

)

.
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Using the general formula for the Gaussian integral,

∫

dnx e−
1

2
Aij xi xj ebi xi =

(2π)n/2

√

det(A)
exp

(

1
2A−1

ij bi bj

)

,

we obtain

I =
1√

1 − κ4σ4
exp

(

µ2κ2

1 − κ2σ2

)

.

Convergence requires κ2σ2 < 1.

(3) The binomial distribution,

BN (n, p) =

(

N

n

)

pn (1 − p)N−n ,

tells us the probability for n successes in N trials if the individual trial success probability

is p. The average number of successes is ν =
∑N

n=0 n BN (n, p) = Np. Consider the limit
N → ∞.

(a) Show that the probability of n successes becomes a function of n and ν alone. That
is, evaluate

Pν(n) = lim
N→∞

BN (n, ν/N) .

This is the Poisson distribution.

(b) Show that the moments of the Poisson distribution are given by

〈nk〉 = e−ν
(

ν
∂

∂ν

)k
eν .

(c) Evaluate the mean and variance of the Poisson distribution.

The Poisson distribution is also known as the law of rare events since p = ν/N → 0 in the
N → ∞ limit. See http://en.wikipedia.org/wiki/Poisson distribution#Occurrence

for some amusing applications of the Poisson distribution.

Solution :

(a) We have

Pν(n) = lim
N→∞

N !

n! (N − n)!

(

ν

N

)n(

1 − ν

N

)N−n

.

Note that

(N − n)! ≃ (N − n)N−n en−N = NN−n
(

1 − n

N

)N
en−N → NN−n eN ,
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where we have used the result limN→∞

(

1 + x
N

)N
= ex. Thus, we find

Pν(n) =
1

n!
νn e−ν ,

the Poisson distribution. Note that
∑

∞

n=0 Pn(ν) = 1 for any ν.

(b) We have

〈nk〉 =
∞
∑

n=0

Pν(n)nk =
∞

∑

n=0

1

n!
nkνn e−ν

= e−ν
(

ν
d

dν

)k
∞
∑

n=0

νn

n!
= e−ν

(

ν
∂

∂ν

)k
eν .

(c) Using the result from (b), we have 〈n〉 = ν and 〈n2〉 = ν + ν2, hence Var(n) = ν.

(4) Consider a D-dimensional random walk on a hypercubic lattice. The position of a parti-
cle after N steps is given by

RN =

N
∑

j=1

n̂j ,

where n̂j can take on one of 2D possible values: n̂j ∈
{

± ê1, . . . ,±êD

}

, where êµ is the
unit vector along the positive xµ axis. Each of these possible values occurs with probability
1/2D, and each step is statistically independent from all other steps.

(a) Consider the generating function SN (k) =
〈

eik·R
N

〉

. Show that

〈

R
α

1

N · · ·Rα
J

N

〉

=
1

i

∂

∂kα
1

· · · 1

i

∂

∂kα
J

∣

∣

∣

∣

k=0

SN (k) .

For example, 〈Rα
NRβ

N 〉 = −
(

∂2SN (k)/∂kα∂kβ

)

k=0
.

(b) Evaluate SN (k) for the case D = 3 and compute the quantities 〈X4
N 〉 and 〈X2

N Y 2
N 〉.

Solution :

(a) The result follows immediately from

1

i

∂

∂kα

eik·R = Rα eik·R

1

i

∂

∂kα

1

i

∂

∂kβ

eik·R = Rα Rβ eik·R ,

et cetera. Keep differentiating with respect to the various components of k.
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(b) For D = 3, there are six possibilities for n̂j : ±x̂, ±ŷ, and ±ẑ. Each occurs with a

probability 1
6 , independent of all the other n̂j′ with j′ 6= j. Thus,

SN (k) =

N
∏

j=1

〈eik·n̂j 〉 =

[

1

6

(

eikx + e−ikx + eiky + e−iky + eikz + e−ikz

)

]N

=

(

cos kx + cos ky + cos kz

3

)N

.

We have

〈X4
N 〉 =

∂4S(k)

∂k4
x

∣

∣

∣

∣

∣

k=0

=
∂4

∂k4
x

∣

∣

∣

∣

∣

kx=0

(

1 − 1
6 k2

x + 1
72 k4

x + . . .
)N

=
∂4

∂k4
x

∣

∣

∣

∣

∣

kx=0

[

1 + N
(

− 1
6 k2

x + 1
72 k4

x + . . .
)

+ 1
2N(N − 1)

(

− 1
6 k2

x + 1
72 k4

x + . . .
)2

+ . . .
]

=
∂4

∂k4
x

∣

∣

∣

∣

∣

kx=0

[

1 − 1
6Nk2

x + 1
72N2k4

x + . . .
]

= 1
3N2 .

Similarly, we have

〈X2
N Y 2

N 〉 =
∂4S(k)

∂k2
x ∂k2

y

∣

∣

∣

∣

∣

k=0

=
∂4

∂k2
x ∂k2

y

∣

∣

∣

∣

∣

kx=0

(

1 − 1
6 (k2

x + k2
y) + 1

72 (k4
x + k4

y) + . . .
)N

=
∂4

∂k2
x ∂k2

y

∣

∣

∣

∣

∣

kx=ky=0

[

1 + N
(

− 1
6 (k2

x + k2
y) + 1

72 (k4
x + k4

y) + . . .
)

+ 1
2N(N − 1)

(

− 1
6 (k2

x + k2
y) + . . .

)2
+ . . .

]

=
∂4

∂k2
x ∂k2

y

∣

∣

∣

∣

∣

kx=ky=0

[

1 − 1
6N(k2

x + k2
y) + 1

72N2(k4
x + k + y4) + 1

36 k2
x k2

y + . . .
]

= 1
9N(N − 1) .

(5) A rare disease is known to occur in f = 0.02% of the general population. Doctors have
designed a test for the disease with ν = 99.90% sensitivity and ρ = 99.95% specificity.

(a) What is the probability that someone who tests positive for the disease is actually
sick?

(b) Suppose the test is administered twice, and the results of the two tests are indepen-
dent. If a random individual tests positive both times, what are the chances he or she
actually has the disease?

(c) For a binary partition of events, find an expression for P (X|A ∩ B) in terms of
P (A|X), P (B|X), P (A|¬X), P (B|¬X), and the priors P (X) and P (¬X) = 1−P (X).
You should assume A and B are independent, so P (A ∩ B|X) = P (A|X) · P (B|X).
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Solution :

(a) Let X indicate that a person is infected, and A indicate that a person has tested positive.
We then have ν = P (A|X) = 0.9990 is the sensitivity and ρ = P (¬A|¬X) = 0.9995 is the
specificity. From Bayes’ theorem, we have

P (X|A) =
P (A|X) · P (X)

P (A|X) · P (X) + P (A|¬X) · P (¬X)
=

νf

νf + (1 − ρ)(1 − f)
,

where P (A|¬X) = 1 − P (¬A|¬X) = 1 − ρ and P (X) = f is the fraction of infected
individuals in the general population. With f = 0.0002, we find P (X|A) = 0.2856.

(b) We now need

P (X|A2) =
P (A2|X) · P (X)

P (A2|X) · P (X) + P (A2|¬X) · P (¬X)
=

ν2f

ν2f + (1 − ρ)2(1 − f)
,

where A2 indicates two successive, independent tests. We find P (X|A2) = 0.9987.

(c) Assuming A and B are independent, we have

P (X|A ∩ B) =
P (A ∩ B|X) · P (X)

P (A ∩ B|X) · P (X) + P (A ∩ B|¬X) · P (¬X)

=
P (A|X) · P (B|X) · P (X)

P (A|X) · P (B|X) · P (X) + P (A|¬X) · P (B|¬X) · P (¬X)
.

This is exactly the formula used in part (b).

(6) Compute the entropy of the F08 Physics 140A grade distribution (in bits). The distri-
bution is available from http://physics.ucsd.edu/students/courses/fall2008/physics140.
Assume 11 possible grades: A+, A, A-, B+, B, B-, C+, C, C-, D, F.

∑

n Nn = 38 A+ A A- B+ B B- C+ C C- D F

Nn 2 9 7 3 9 3 1 2 0 2 0

−pn log2 pn 0.224 0.492 0.450 0.289 0.492 0.289 0.138 0.224 0 0.224 0

Table 1: F08 Physics 140A final grade distribution.

Solution :

Assuming the only possible grades are A+, A, A-, B+, B, B-, C+, C, C-, D, F (11 possibilities),
then from the chart we produce the entries in Tab. 1. We then find

S = −
11
∑

n=1

pn log2 pn = 2.82 bits

For maximum information, set pn = 1
11 for all n, whence Smax = log2 11 = 3.46 bits.
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PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #2 SOLUTIONS

(1) Consider the matrix

M =

(

4 4
−1 9

)

.

(a) Find the characteristic polynomial P (λ) = det(λI − M) and the eigenvalues.

(b) For each eigenvalue λα, find the associated right eigenvector Rα
i and left eigenvector

Lα
i . Normalize your eigenvectors so that 〈Lα |Rβ 〉 = δαβ .

(c) Show explicitly that Mij =
∑

α λα Rα
i Lα

j .

Solution :

(a) The characteristic polynomial is

P (λ) = det

(

λ − 4 −4
1 λ − 9

)

= λ2 − 13λ + 40 = (λ − 5)(λ − 8) ,

so the two eigenvalues are λ1 = 5 and λ2 = 8.

(b) Let us write the right eigenvectors as ~Rα =

(

Rα
1

Rα
2

)

and the left eigenvectors as ~Lα =
(

Lα
1 Lα

2

)

. Having found the eigenvalues, we only need to solve four equations:

4R1
1 + 4R1

2 = 5R1
1 , 4R2

1 + 4R2
2 = 8R2

1 , 4L1
1 − L1

2 = 5L1
1 , 4L2

1 − L2
2 = 8L2

1 .

We are free to choose Rα
1 = 1 when possible. We must also satisfy the normalizations

〈Lα |Rβ 〉 = Lα
i Rβ

i = δαβ . We then find

~R1 =

(

1
1
4

)

, ~R2 =

(

1
1

)

, ~L1 =
(

4
3 −4

3

)

, ~L2 =
(

−1
3

4
3

)

.

(c) The projectors onto the two eigendirections are

P1 = |R1 〉〈L1 | =





4
3 −4

3

1
3 −1

3



 , P2 = |R2 〉〈L2 | =





−1
3

4
3

−1
3

4
3



 .

Note that P1 + P2 = I. Now construct

λ1 P1 + λ2 P2 =

(

4 4
−1 9

)

,

as expected.
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(2) A Markov chain is a probabilistic process which describes the transitions of discrete
stochastic variables in time. Let Pi(t) be the probability that the system is in state i at time
t. The time evolution equation for the probabilities is

Pi(t + 1) =
∑

j

Yij Pj(t) .

Thus, we can think of Yij = P (i , t + 1 | j , t) as the conditional probability that the system is
in state i at time t+1 given hat it was in state j at time t. Y is called the transition matrix. It
must satisfy

∑

i Yij = 1 so that the total probability
∑

i Pi(t) is conserved.

Suppose I have two bags of coins. Initially bag A contains two quarters and bag B contains
five dimes. Now I do an experiment. Every minute I exchange a random coin chosen from
each of the bags. Thus the number of coins in each bag does not fluctuate, but their values
do fluctuate.

(a) Label all possible states of this system, consistent with the initial conditions. (I.e.
there are always two quarters and five dimes shared among the two bags.)

(b) Construct the transition matrix Yij .

(c) Show that the total probability is conserved is
∑

i Yij = 1, and verify this is the case
for your transition matrix Y . This establishes that (1, 1, . . . , 1) is a left eigenvector of
Y corresponding to eigenvalue λ = 1.

(d) Find the eigenvalues of Y .

(e) Show that as t → ∞, the probability Pi(t) converges to an equilibrium distribution
P eq

i which is given by the right eigenvector of i corresponding to eigenvalue λ = 1.
Find P eq

i , and find the long time averages for the value of the coins in each of the
bags.

Solution :

(a) There are three possible states consistent with the initial conditions. In state | 1 〉, bag A
contains two quarters and bag B contains five dimes. In state | 2 〉, bag A contains a quarter
and a dime while bag B contains a quarter and five dimes. In state | 3 〉, bag A contains
two dimes while bag B contains three dimes and two quarters. We list these states in the
table below, along with their degeneracies. The degeneracy of a state is the number of
configurations consistent with the state label. Thus, in state | 2 〉 the first coin in bag A
could be a quarter and the second a dime, or the first could be a dime and the second a
quarter. For bag B, any of the five coins could be the quarter.

(b) To construct Yij , note that transitions out of state | 1 〉, i.e. the elements Yi1, are particu-
larly simple. With probability 1, state | 1 〉 always evolves to state | 2 〉. Thus, Y21 = 1 and
Y11 = Y31 = 0. Now consider transitions out of state | 2 〉. To get to state | 1 〉, we need
to choose the D from bag A (probability 1

2 ) and the Q from bag B (probability 1
5 ). Thus,

2



Y12 = 1
2 × 1

5 = 1
10 . For transitions back to state | 2 〉, we could choose the Q from bag

A (probability 1
2 ) if we also chose the Q from bag B (probability 1

5 ). Or we could choose
the D from bag A (probability 1

2 ) and one of the D’s from bag B (probability 4
5 ). Thus,

Y22 = 1
2 × 1

5 + 1
2 × 4

5 = 1
2 . Reasoning thusly, one obtains the transition matrix,

Y =













0 1
10 0

1 1
2

2
5

0 2
5

3
5













.

Note that
∑

i Yij = 1.

| j 〉 bag A bag B gA

j gB

j gTOT

j

| 1 〉 QQ DDDDD 1 1 1

| 2 〉 QD DDDDQ 2 5 10

| 3 〉 DD DDDQQ 1 10 10

Table 1: States and their degeneracies.

(c) Our explicit form for Y confirms the sum rule
∑

i Yij = 1 for all j. Thus, ~L1 = (1 1 1) is
a left eigenvector of Y with eigenvalue λ = 1.

(d) To find the other eigenvalues, we compute the characteristic polynomial of Y and find,
easily,

P (λ) = det(λ I − Y ) = λ3 − 11
10 λ2 + 1

25 λ + 3
50 .

This is a cubic, however we already know a root, i.e. λ = 1, and we can explicitly verify
P (λ = 1) = 0. Thus, we can divide P (λ) by the monomial λ−1 to get a quadratic function,
which we can factor. One finds after a small bit of work,

P (λ)

λ − 1
= λ2 − 3

10 λ − 3
50 =

(

λ − 3
10

)(

λ + 1
5

)

.

Thus, the eigenspectrum of Y is λ1 = 1, λ2 = 3
10 , and λ3 = −1

5 .

(e) We can decompose Y into its eigenvalues and eigenvectors, like we did in problem (1).
Write

Yij =

3
∑

α=1

λαRα
i Lα

j .

Now let us start with initial conditions Pi(0) for the three configurations. We can always
decompose this vector in the right eigenbasis for Y , viz.

Pi(t) =

3
∑

α=1

Cα(t)Rα
i ,
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The initial conditions are Cα(0) =
∑

i Lα
i Pi(0). But now using our eigendecomposition of

Y , we find that the equations for the discrete time evolution for each of the Cα decouple:

Cα(t + 1) = λαCα(t) .

Clearly as t → ∞, the contributions from α = 2 and α = 3 get smaller and smaller, since
Cα(t) = λt

α Cα(0), and both λ2 and λ3 are smaller than unity in magnitude. Thus, as t → ∞
we have C1(t) → C1(0), and C2,3(t) → 0. Note C1(0) =

∑

i L
1
i Pi(0) =

∑

i Pi(0) = 1, since
~L1 = (1 1 1). Thus, we obtain Pi(t → ∞) → R1

i , the components of the eigenvector ~R1. It
is not too hard to explicitly compute the eigenvectors:

~L1 =
(

1 1 1
)

~L2 =
(

10 3 −4
)

~L3 =
(

10 −2 1
)

~R1 = 1
21





1
10
10




~R2 = 1

35





1
3
−4




~R3 = 1

15





1
−2
1



 .

Thus, the equilibrium distribution P eq
i = limt→∞ Pi(t) satisfies detailed balance:

P eq
j =

gTOT

j
∑

l g
TOT

l

.

Working out the average coin value in bags A and B under equilibrium conditions, one
finds A = 200

7 and B = 500
7 (centa), and B/A is simply the ratio of the number of coins in

bag B to the number in bag A. Note A+B = 100 cents, as the total coin value is conserved.

(3) Poincar’e recurrence is guaranteed for phase space dynamics that are invertible, volume
preserving, and acting on a bounded phase space.

(a) Give an example of a map which is volume preserving on a bounded phase space,
but which is not invertible and not recurrent.

(b) Give an example of a map which is invertible on a bounded phase space, but which
is not volume preserving and not recurrent.

(c) Give an example of a map which is invertible and volume preserving, but on an
unbounded phase space and not recurrent.

Solution :

(a) Consider the map f(x) = frac(x), where frac(x) = x − gint(x) is the fractional part of
x, obtained by subtracting from x the greatest integer less than x. Acting on any set of
width less than unity, this map is volume-preserving. However it is many-to-one hence
not invertible. For example, f(π) = f(π − 1) = f(π − 2) = π − 3. For sufficiently small
ǫ, the interval [π − ǫ , π + ǫ] gets mapped onto the interval [π − 3 − ǫ , π − 3 + ǫ], never to
return to the original interval.
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(b) Any dissipative dynamical system will do. For example, consider ẋ = p/m, ṗ = −γp,
on some finite region of (x, p) space which contains the origin.

(c) Consider ẋ = p/m, ṗ = 0 on the infinite phase space (x, p) ∈ R
2. If p 6= 0 the x-motion

is monotonically increasing or decreasing (i.e. either to the right or to the left along the real
line).

(4) Consider a toroidal phase space (x, p) ∈ T
2. You can describe the torus as a square

[0, 1] × [0, 1] with opposite sides identified. Design your own modified Arnold cat map
acting on this phase space, i.e. a 2 × 2 matrix with integer coefficients and determinant 1.

(a) Start with an initial distribution localized around the center – say a disc centered
at (1

2 , 1
2). Show how these initial conditions evolve under your map. Can you tell

whether your dynamics are mixing?

(b) Now take a pixelated image. For reasons discussed in the lecture notes, this image
should exhibit Poincaré recurrence. Can you see this happening?

Solution :

(a) Any map

(

x′

p′

)

=

M
︷ ︸︸ ︷

(

a b
c d

) (

x
p

)

,

will due, provided det M = ad − bc = 1. Arnold’s cat map has M =

(

1 1
1 2

)

. Consider the

generalized cat map with M =

(

1 1
p p + 1

)

. Starting from an initial square distribution, we

iterate the map up to three times and show the results in Figs. 1, 3, and 5. The numerical
results are consistent with a mixing flow. (With just a few further interations, almost the
entire torus is covered.)

(c) A pixelated image exhibits Poincaré recurrence, as we see in Figs. 2, 4, and 6.

(5) Consider a spin singlet formed by two S = 1
2 particles, |Ψ 〉 = 1

√

2

(

|↑
A
↓
B
〉 − |↓

A
↑
B
〉
)

.

Find the reduced density matrix, ρ
A

= Tr
B
|Ψ 〉〈Ψ |.

Solution :

We have

|Ψ 〉〈Ψ | = 1
2 |↑A ↓B 〉〈 ↑A ↓B | + 1

2 |↓A ↑B 〉〈 ↓A ↑B | − 1
2 |↑A ↓B 〉〈 ↓A ↑B | − 1

2 |↓A ↑B 〉〈 ↑A ↓B | .

5



Figure 1: Zeroth, first, second, and third iterates of the generalized cat map with p = 1 (i.e.
Arnold’s cat map), acting on an initial square distribution (clockwise from upper left).

Figure 2: Evolution of a pixelated blobfish under the Arnold cat map.

Now take the trace over the spin degrees of freedom on site B. Only the first two terms
contribute, resulting in the reduced density matrix

ρA = Tr
B

|Ψ 〉〈Ψ | = 1
2 |↑A 〉〈 ↑A | + 1

2 |↓A 〉〈 ↓A | .

Note that Tr ρ
A

= 1, but whereas the full density matrix ρ = Tr
B
|Ψ 〉〈Ψ | had one eigen-

value of 1, corresponding to eigenvector |Ψ 〉, and three eigenvalues of 0 (any state or-

6



Figure 3: Zeroth, first, second, and third iterates of the generalized cat map with p = 2,
acting on an initial square distribution (clockwise from upper left).

Figure 4: Evolution of a pixelated blobfish under the p = 2 generalized cat map.

thogonal to |Ψ 〉, the reduced density matrix ρ
A

does not correspond to a ‘pure state’
in that it is not a projector. It has two degenerate eigenvalues at λ = 1

2 . The quantity
S

A
= −Tr ρ

A
ln ρ

A
= ln 2 is the quantum entanglement entropy for the spin singlet.

7



Figure 5: Zeroth, first, second, and third iterates of the generalized cat map with p = 3,
acting on an initial square distribution (clockwise from upper left).

Figure 6: Evolution of a pixelated blobfish under the p = 3 generalized cat map.
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PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #3 SOLUTIONS

(1) Consider a generalization of the situation in §4.4 of the notes where now three reser-
voirs are in thermal contact, with any pair of systems able to exchange energy.

(a) Assuming interface energies are negligible, what is the total density of states D(E)?
Your answer should be expressed in terms of the densities of states functions D1,2,3

for the three individual systems.

(b) Find an expression for P (E1, E2), which is the joint probability distribution for sys-
tem 1 to have energy E1 while system 2 has energy E2 and the total energy of all
three systems is E1 + E2 + E3 = E.

(c) Extremize P (E1, E2) with respect to E1,2. Show that this requires the temperatures
for all three systems must be equal: T1 = T2 = T3. Writing Ej = E∗

j + δEj , where E∗

j

is the extremal solution (j = 1, 2), expand lnP (E∗

1 + δE1 , E∗

2 + δE2) to second order
in the variations δEj . Remember that

S = k
B

lnD ,

(

∂S

∂E

)

V,N

=
1

T
,

(

∂2S

∂E2

)

V,N

= − 1

T 2CV

.

(d) Assuming a Gaussian form for P (E1, E2) as derived in part (c), find the variance of
the energy of system 1,

Var(E1) =
〈

(E1 − E∗

1)2
〉

.

Solution :

(a) The total density of states is a convolution:

D(E) =

∞
∫

−∞

dE1

∞
∫

−∞

dE2

∞
∫

−∞

dE3 D1(E1)D2(E2)D3(E3) δ(E − E1 − E2 − E3) .

(b) The joint probability density P (E1, E2) is given by

P (E1, E2) =
D1(E2)D2(E2)D3(E − E1 − E2)

D(E)
.

(c) We set the derivatives ∂ ln P/∂E1,2 = 0, which gives

∂ ln P

∂E1

=
∂ ln D1

∂E1

− ∂D3

∂E3

= 0 ,
∂ lnP

∂E2

=
∂ ln D3

∂E2

− ∂D3

∂E3

= 0 ,

1



where E3 = E − E1 − E2 in the argument of D3(E3). Thus, we have

∂ ln D1

∂E1

=
∂ ln D2

∂E2

=
∂ ln D3

∂E3

≡ 1

T
.

Expanding ln P (E∗

1 + δE1 , E∗

2 + δE2) to second order in the variations δEj , we find the
first order terms cancel, leaving

ln P (E∗

1 + δE1 , E∗

2 + δE2) = ln P (E∗

1 , E∗

2) − (δE1)
2

2k
B
T 2C1

− (δE2)
2

2k
B
T 2C2

− (δE1 + δE2)
2

2k
B
T 2C3

+ . . . ,

where ∂2 ln Dj/∂E2 = −1/2k
B
T 2Cj , with Cj the heat capacity at constant volume and

particle number. Thus,

P (E1, E2) =

√

det(C−1)

2πk
B
T 2

exp
(

− 1

2k
B
T 2

C−1
ij δEi δEj

)

,

where the matrix C−1 is defined as

C−1 =

(

C−1
1 + C−1

3 C−1
3

C−1
3 C−1

2 + C−1
3

)

.

One finds
det(C−1) = C−1

1 C−1
2 + C−1

1 C−1
3 + C−1

2 C−1
3 .

The prefactor in the above expression for P (E1, E2) has been fixed by the normalization
condition

∫

dE1

∫

dE2 P (E1, E2) = 1.

(d) Integrating over E2, we obtain P (E1):

P (E1) =

∞
∫

−∞

dE2 P (E1, E2) =
1

√

2πk
B

˜C1T
2

e−(δE
1
)2/2k

B
eC
1
T 2

,

where

˜C1 =
C−1

2 + C−1
3

C−1
1 C−1

2 + C−1
1 C−1

3 + C−1
2 C−1

3

.

Thus,

〈(δE1)
2〉 =

∞
∫

−∞

dE1 (δE1)
2 = k

B

˜C1T
2 .

(2) Consider a two-dimensional gas of identical classical, noninteracting, massive rela-

tivistic particles with dispersion ε(p) =
√

p2c2 + m2c4.

(a) Compute the free energy F (T, V,N).

2



(b) Find the entropy S(T, V,N).

(c) Find an equation of state relating the fugacity z = eµ/k
B

T to the temperature T and
the pressure p.

Solution :

(a) We have Z = (ζA)N/N ! where A is the area and

ζ(T ) =

∫

d2p

h2
e−β

√
p2c2+m2c4 =

2π

(βhc)2
(

1 + βmc2
)

e−βmc2 .

To obtain this result it is convenient to change variables to u = β
√

p2c2 + m2c4, in which
case p dp = u du/β2c2, and the lower limit on u is mc2. The free energy is then

F = −k
B
T ln Z = Nk

B
T ln

(

2π~
2c2N

(k
B
T )2A

)

− Nk
B
T ln

(

1 +
mc2

k
B
T

)

+ Nmc2 .

where we are taking the thermodynamic limit with N → ∞.

(b) We have

S = −∂F

∂T
= −Nk

B
ln

(

2π~
2c2N

(k
B
T )2A

)

+ Nk
B

ln

(

1 +
mc2

k
B
T

)

+ Nk
B

(

mc2 + 2k
B
T

mc2 + k
B
T

)

.

(c) The grand partition function is

Ξ(T, V, µ) = e−βΩ = eβpV =

∞
∑

N=0

ZN (T, V,N) eβµN .

We then find Ξ = exp
(

ζA eβµ
)

, and

p =
(k

B
T )3

2π(~c)2

(

1 +
mc2

k
B
T

)

e(µ−mc2)/k
B

T .

Note that

n =
∂(βp)

∂µ
=

p

k
B
T

=⇒ p = nk
B
T .

(3) A three-level system has energy levels ε0 = 0, ε1 = ∆, and ε2 = 4∆. Find the free
energy F (T ), the entropy S(T ) and the heat capacity C(T ).

Solution :

We have
Z = Tr e−βH = 1 + e−β∆ + e−4β∆ .

3



The free energy is

F = −k
B
T ln Z = −k

B
T ln

(

1 + e−∆/k
B

T + e−4∆/k
B

T
)

.

To find the entropy S, we differentiate with respect to temperature:

S = −∂F

∂T

∣

∣

∣

∣

V,N

= k
B

ln
(

1 + e−∆/k
B

T + e−4∆/k
B

T
)

+
∆

T
· e−∆/k

B
T + 4e−4∆/k

B
T

1 + e−∆/k
B

T + e−4∆/k
B

T
.

Now differentiate with respect to T one last time to find

CV,N = k
B

(

∆

k
B
T

)2

· e−∆/k
B

T + 16 e−4∆/k
B

T + 9 e−5∆/k
B

T

(

1 + e−∆/k
B

T + e−4∆/k
B

T
)2 .

(4) Consider a many-body system with Hamiltonian Ĥ = 1
2N̂(N̂ − 1)U , where N̂ is the

particle number and U > 0 is an interaction energy. Assume the particles are identical and
can be described using Maxwell-Boltzmann statistics, as we have discussed. Assuming
µ = 0, plot the entropy S and the average particle number N as functions of the scaled
temperature k

B
T/U . (You will need to think about how to impose a numerical cutoff in

your calculations.)

Solution :

The grand partition function is

Ξ(T, µ) = e−βΩ = eβpV =
∞
∑

N=0

e−N(N−1)βU/2 ,

where we have taken µ = 0 and we have assumed that each state of definite particle
number ,|N 〉, is nondegenerate. We then have the grand potential

Ω(T, µ) = −k
B
T ln Ξ = −k

B
T ln

(

∞
∑

N=0

e−N(N−1) U/2k
B

T

)

The entropy is

S = −∂Ω

∂T
= k

B
ln

(

∞
∑

N=0

e−N(N−1) U/2k
B

T

)

+
U

2T
·
∑

∞

N=0 N(N − 1) e−N(N−1)U/2k
B

T

∑

∞

N=0 e−N(N−1) U/2k
B

T
.

This must be evaluated numerically. The results are shown in Fig. 1. Note that limT→0 S(T ) =
k

B
ln 2, which indicates a doubly degenerate ground state. This is because both |N = 0 〉

and |N = 1 〉 have energy E0 = E1 = 0.
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Figure 1: Entropy as a function of dimensionless temperature for problem #4. Note that
S(T = 0) = ln 2 because the states |N = 0 〉 and |N = 1 〉 are degenerate.
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PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #4 SOLUTIONS

(1) Consider a noninteracting classical gas with Hamiltonian

H =

N
∑

i=1

ε(pi) ,

where ε(p) is the dispersion relation. Define

ξ(T ) = h−d

∫

ddp e−ε(p)/k
B

T .

(a) Find F (T, V,N).

(b) Find G(T, p,N).

(c) Find Ω(T, V, µ).

(d) Show that

βp

∞
∫

0

dV e−βpV Z(T, V,N) = e−G(T,p,N)/k
B

T .

Solution :

(a) We have Z(T, V,N) = (V ξ)N/N !, so

F (T, V,N) = −k
B
T ln Z(T, V,N) = −Nk

B
T ln

(

V

N

)

− Nk
B
T ln ξ(T ) − Nk

B
T .

(b) G is obtained from F by Legendre transform: G = F + pV , i.e.

G(T, p,N) = −Nk
B
T ln

(

k
B
T

p

)

− Nk
B
T ln ξ(T ) .

Note that we have used the ideal gas law pV = Nk
B
T here.

(c) Ω is obtained from F by Legendre transform: Ω = F − µN . Another way to obtain Ω
is to use the grand potential Ξ = exp(V ξ(T ) eµ/k

B
T ), whence

Ω(T, V, µ) = −V k
B
T ξ(T ) eµ/k

B
T .

(d) We have

Y (T, p,N) = βp

∞
∫

0

dV e−βpV Z(T, V,N) =
ξN (T )

N !
βp

∞
∫

0

dV V N e−βpV =

(

k
B
T ξ(T )

p

)N

1



Thus, G(T, p,N) = −Nk
B
T ln

(

k
B
T ξ/p

)

. Note that if we normalize the volume integral
differently and define

Y (T, p,N) =

∞
∫

0

dV

V0

e−βpV Z(T, V,N) =

(

k
B
T

pV0

)

·
(

k
B
T ξ(T )

p

)N

,

we obtain G(T, p,N) = −Nk
B
T ln

(

k
B
T ξ/p

)

− k
B
T ln(k

B
T/pV0), which differs from the

previous result only by an O(N0) term, which is subextensive and hence negligible in the
thermodynamic limit.

(2) A three-dimensional gas of magnetic particles in an external magnetic field H is de-
scribed by the Hamiltonian

H =
∑

i

[

p2
i

2m
− µ0Hσi

]

,

where σi = ±1 is the spin polarization of particle i and µ0 is the magnetic moment per
particle.

(a) Working in the ordinary canonical ensemble, derive an expression for the magneti-
zation of system.

(b) Repeat the calculation for the grand canonical ensemble. Also, find an expression for
the Landau free energy Ω(T, V, µ).

(c) Calculate how much heat will be given off by the system when the magnetic field
is reduced from H to zero at constant volume, constant temperature, and particle
number.

Solution :

(a)The partition function trace is now an integral over all coordinates and momenta with
measure dµ as before, plus a sum over all individual spin polarizations. Thus,

Z = Tr e−H/k
B

T =
1

N !

N
∏

i=1

∑

σi

∫

d3xi d
3pi

h3
e−p2

i /2mk
B

T eµ
0
Hσi/k

B
T

=
1

N !
V N λ−3N

T

[

2 cosh(µ0H/k
B
T )

]N
,

where λT = (2π~
2/mk

B
T )1/2 is the thermal wavelength. The Helmholtz free energy is

F (T, V,H,N) = −k
B
T ln Z(T, V,H,N)

= −Nk
B
T ln

(

V

Nλ3
T

)

− Nk
B
T ln cosh(µ0H/k

B
T ) − Nk

B
T (1 + ln 2) .

2



The magnetization is then

M(T, V,H,N) = − ∂F

∂H
= Nµ0 tanh(µ0H/k

B
T ) .

(b) The grand partition function is

Ξ(T, V,H, µ) =

∞
∑

N=0

eµN/k
B

T Z(T, V,N) = exp
(

V λ−3
T · 2 cosh(µ0H/k

B
T ) · eµ/k

B
T
)

.

Thus,

Ω(T, V,H, µ) = −k
B
T ln Ξ(T, V, µ) = −V k

B
T λ−3

T · 2 cosh(µ0H/k
B
T ) · eµ/k

B
T .

Then

M(T, V,H, µ) = −∂Ω

∂H
= 2µ0 · V λ−3

T · sinh(µ0H/k
B
T ) · eµ/k

B
T .

Note that

N(T, V,H, µ) = −∂Ω

∂µ
= V λ−3

T · cosh(µ0H/k
B
T ) · eµ/k

B
T ,

so M = Nµ0 tanh(µ0H/k
B
T ), which agrees with the result from part (a).

(c) Starting with our expression for F (T, V,N) in part (a), we differentiate to find the en-
tropy:

S(T, V,H,N) = −∂F

∂T
= Nk

B
ln cosh(µ0H/k

B
T ) − Nµ0H

T
tanh(µ0H/k

B
T ) + S(T, V, 0, N) ,

where S(T, V, 0, N) is the entropy at H = 0, which we don’t need to compute for this
problem. The heat absorbed by the system is

Q =

∫

d̄Q = TS(0) − TS(H) = Nk
B
T ln cosh(µ0H/k

B
T ) + Nµ0H tanh(µ0H/k

B
T )

= Nk
B
T

(

x tanh x − ln cosh x
)

,

where x = µ0H/k
B
T . Defining f(x) = x tanh x − ln cosh x, one has f ′(x) = x sech2x which

is positive for all x > 0. Since f(x) is an even function with f(0) = 0, we conclude f(x) > 0
for x 6= 0. Thus, Q > 0, which means that the system absorbs heat under this process. I.e.
the heat released by the system is (−Q).

(3) A classical three-dimensional gas of noninteracting particles has the Hamiltonian

H =
N

∑

i=1

[

A |pi|s + B |qi|t
]

,

where s and t are nonnegative real numbers.
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(a) Find the free energy F (T, V,N).

(b) Find the average energy E(T, V,N).

(c) Find the grand potential Ω(T, V, µ).

Remember the definition of the Gamma function, Γ(z) =
∞
∫

−∞

du uz−1 e−u.

Solution :

(a) Working in the OCE, the partition function is Z = ξN
p (T ) ξN

q (T )/N !, where

ξp(T ) =
1

h3

∫

d3p exp
(

− Aps/k
B
T

)

ξq(T ) =

∫

d3q exp
(

− B qt/k
B
T

)

.

We focus first on the momentum integral, changing variables to u = Aps/kT . Then

u =
Aps

k
B
T

⇒ p =

(

k
B
T u

A

)1/s

, p2 dp =

(

k
B
T

A

)3/s

· s−1 u(3/s)−1 du ,

and

ξp(T ) =
1

h3

∫

d3p exp
(

− Aps/k
B
T

)

=
4π

h3

(

k
B
T

A

)3/s

· 1

s

∞
∫

−∞

du u(3/s)−1 e−u

=
4π

sh3
Γ(3/s)

(

k
B
T

A

)3/s

,

where we have used z Γ(z) = Γ(z + 1). Mutatis mutandis,

ξq(T ) =

∫

d3q exp
(

− B qt/k
B
T

)

=
4π

t
Γ(3/t)

(

k
B
T

B

)3/t

.

Thus, the free energy is

F (T, V,N) = −k
B
T ln Z = −Nk

B
T ln

(

ξp(T ) ξq(T )

N

)

− Nk
B
T .

(b) The average energy is

E =
∂

∂β
(βF ) =

(

3

s
+

3

t

)

Nk
B
T .

4



(c) The grand potential is Ω = −k
B
T ln Ξ, and Ξ = exp

(

ξp(T ) ξq(T ) eµ/k
B

T
)

. Thus,

Ω(T, V,N) = −k
B
T ξp(T ) ξq(T ) eµ/k

B
T .

Note that F and Ω are both independent of V , which means that the pressure p vanishes!

(4) A gas of nonrelativistic particles of mass m is held in a container at constant pressure
p and temperature T . It is free to exchange energy with the outside world, but the particle
number N remains fixed. Compute the variance in the system volume, Var(V ), and the
ratio (∆V )rms/〈V 〉. Use the Gibbs ensemble.

Solution : The Gibbs free energy is

G(T, p,N) = −Nk
B
T ln

(

k
B
T

p λ3
T

)

,

where λT = (2π~
2/mk

B
T )1/2 is the thermal wavelength. Thus, with

Y = e−G/k
B

T =

∫

dV

V0

e−βpV Z(T, V,N) ,

we have

〈V 〉 = − 1

β

1

Y

∂Y

∂p
=

∂G

∂p
=

Nk
B
T

p

Var(V ) = 〈V 2〉 − 〈V 〉2 =
1

β2

{

1

Y

∂2Y

∂p2
−

(

1

Y

∂Y

∂p

)2
}

= −k
B
T

∂2G

∂p2
= N

(

k
B
T

p

)2

.

Thus, (∆V )
RMS

=
√

Var(V )/〈V 〉 = N−1/2.
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PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #5 SOLUTIONS

PRACTICE MIDTERM EXAM

(1) A nonrelativistic gas of spin-1
2 particles of mass m at temperature T and pressure p is

in equilibrium with a surface. There is no magnetic field in the bulk, but the surface itself
is magnetic, so the energy of an adsorbed particle is −∆−µ0Hσ, where σ = ±1 is the spin
polarization and H is the surface magnetic field. The surface has Ns adsorption sites.

(a) Compute the Landau free energy of the gas Ωgas(T, V, µ). Remember that each parti-
cle has two spin polarization states.

(b) Compute the Landau free energy of the surface Ω
surf

(T,H,Ns). Remember that each
adsorption site can be in one of three possible states: empty, occupied with σ = +1,
and occupied with σ = −1.

(c) Find an expression for the fraction f(p, T,∆,H) of occupied adsorption sites.

(d) Find the surface magnetization, M = µ0

(

N
surf,↑ − N

surf,↓

)

.

Solution :

(a) We have

Ξgas(T, V, µ) =
∞

∑

N=0

eNµ/k
B

T Z(T, V,N) =
∞

∑

N=0

V N

N !
eNµ/k

B
T 2N λ−3N

T

= exp
(

2V k
B
Tλ−3

T eµ/k
B

T
)

,

where λT =
√

2π~2/mk
B
T is the thermal wavelength. Thus,

Ωgas = −k
B
T ln Ξgas = −2V k

B
Tλ−3

T eµ/k
B

T .

(b) Each site on the surface is independent, with three possible energy states: E = 0 (va-
cant), E = −∆−µ0H (occupied with σ = +1), and E = −∆+µ0H (occupied with σ = −1).
Thus,

Ξsurf(T,H,Ns) =
(

1 + e(µ+∆+µ
0
H)/k

B
T + e(µ+∆−µ

0
H)/k

B
T
)Ns

.

The surface free energy is

Ωsurf(T,H,Ns) = −k
B
T lnΞsurf = −NskB

T ln
(

1 + 2 e(µ+∆)/k
B

T cosh(µ0H/k
B
T )

)

.

1



(c) The fraction of occupied surface sites is f = 〈Nsurf/Ns〉. Thus,

f = − 1

Ns

∂Ω
surf

∂µ
=

2 e(µ+∆)/k
B

T cosh(µ0H/k
B
T )

1 + 2 e(µ+∆)/k
B

T cosh(µ0H/k
B
T )

=
2

2 + e−(µ+∆)/k
B

T sech(µ0H/k
B
T )

.

To find f(p, T,∆,H), we must eliminate µ in favor of p, the pressure in the gas. This is
easy! From Ωgas = −pV , we have p = 2k

B
Tλ−3

T eµ/k
B

T , hence

e−µ/k
B

T =
2k

B
T

p λ3
T

.

Thus,

f(p, T,∆,H) =
p λ3

T

p λ3
T + k

B
T e−∆/k

B
T sech(µ0H/k

B
T )

.

Note that f → 1 when ∆ → ∞, when T → 0, when p → ∞, or when H → ∞.

(d) The surface magnetization is

M = −∂Ω
surf

∂H
= Ns µ0 ·

2 e(µ+∆)/k
B

T sinh(µ0H/k
B
T )

1 + 2 e(µ+∆)/k
B

T cosh(µ0H/k
B
T )

=
Ns µ0 p λ3

T tanh(µ0H/k
B
T )

p λ3
T + k

B
T e−∆/k

B
T sech(µ0H/k

B
T )

.
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PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #6 SOLUTIONS

(1) ν = 8 moles of a diatomic ideal gas are subjected to a cyclic quasistatic process, the
thermodynamic path for which is an ellipse in the (V, p) plane. The center of the ellipse
lies at (V0, p0) = (0.25m3, 1.0 bar). The semimajor axes of the ellipse are ∆V = 0.10m3 and
∆p = 0.20 bar.

(a) What is the temperature at (V, p) = (V0 + ∆V, p0)?

(b) Compute the net work per cycle done by the gas.

(c) Compute the internal energy difference E(V0 − ∆V, p0) − E(V0, p0 − ∆p).

(d) Compute the heat Q absorbed by the gas along the upper half of the cycle.

Solution :

(a) The temperature is T = pV/νR. With V = V0 + ∆V = 0.35m3 and p = p0 = 1.0 bar, we
have

T =
(105 Pa)(0.35m3)

(8mol)(8.31 J/mol K)
= 530K .

(b) The area of an ellipse is π times the product of the semimajor axis lengths.

∮

p dV = π (∆p)(∆V ) = π (0.20 × 106 bar) (0.10m3) = 6.3 kJ .

(c) For a diatomic ideal gas, E = 5
2pV . Thus,

∆E = 5
2

(

V0 ∆p − p0 ∆V ) = 5
2 (−0.05 × 105 J) = −13 kJ .

(d) We have Q = ∆E + W , with

W = 2 p0 ∆V + π
2 (∆p)(∆V ) = 23 kJ ,

which is the total area under the top half of the ellipse. The difference in energy is given
by ∆E = 5

2 p0 · 2∆V = 5 p0 ∆V , so

Q = ∆E + W = 7 p0 ∆V + π
2 (∆p)(∆V ) = 73 kJ .

1



(2) Determine which of the following differentials are exact and which are inexact.

(a) xy dx + xy dy

(b) (x + y−1) dx − xy−2 dy

(c) xy3 dx + 3x2y2 dy

(d) (ln y + ln z) dx + xy−1 dy + xz−1dz

Solution :

Recall d̄F =
∑

i Ai(x) dxi is exact if
∂Ai

∂xj
=

∂Aj

∂xi
for all i and j. Thus,

(a) d̄F = xy dx + xy dy is inexact, since ∂Ax/∂y = x but ∂Ay/∂x = y. However, d̄F =
xy d(x + y), (xy)−1d̄F = d(x + y) is exact.

(b) d̄F = (x + y−1) dx − xy−2 dy = d
(

1
2x2 + xy−1

)

is exact.

(c) d̄F = xy3 dx + 3x2y2 dy is inexact, since ∂Ax/∂y = 3xy2 but ∂Ay/∂x = 6xy2. However,
d̄F = x d(xy3), so x−1d̄F = d(xy3) is exact.

(d) d̄F = (ln y + ln z) dx + xy−1 dy + xz−1dz = d(x ln y + x ln z) is exact.

(3) Liquid mercury at atmospheric pressure and temperature T = 0◦ C has a molar volume
of 14.72 cm3/mol and a specific heat a constant pressure of cp = 28.0 J/mol·K. Its coefficient

of expansion is α = 1
V

(

∂V
∂T

)

p
= 1.81 × 10−4/K and its isothermal compressibility is κT =

− 1
V

(

∂V
∂T

)

T
= 3.88 × 10−12 cm2/dyn. Find its specific heat at constant volume cV and the

ratio γ = cp/cV . [Reif problem 5.10]

Solution :

According to eqn. (2.307) in the notes,

cp − cV =
vTα2

p

κT

=
(14.72 × 10−6m3/mol)(273K)(1.81 × 10−4/K)2

3.88 × 10−11 m s2/kg
= 3.39 J/K .

Thus,

cV = 24.6 J/K , γ =
cp

cv

=
28.0

24.6
= 1.14 .
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(4) ν moles of an ideal diatomic gas are driven along the cycle depicted in Fig. 1. Section
AB is an adiabatic free expansion; section BC is an isotherm at temperature T

A
= T

B
= T

C
;

CD is an isobar, and DA is an isochore. The volume at B is given by V
B

= (1− x)V
A

+ xV
C

,
where 0 ≤ x ≤ 1.

(a) Find an expression for the total work Wcycle in terms of ν, T
A

, V
A

, V
C

, and x.

(b) Suppose V
A

= 1.0L, V
C

= 5.0L, T
A

= 500K, and ν = 5. What is the volume V
B

such
that Wcycle = 0?

Figure 1: Thermodynamic cycle for problem 4, consisting of adiabatic free expansion (AB),
isotherm (BC), isobar (CD), and isochore (DA).

Solution :

(a) We have W
AB

= W
DA

= 0, and

WBC =

C
∫

B

p dV = νR TA

C
∫

B

dV

V
= νRTA ln

(

V
C

V
B

)

WCD =

D
∫

C

p dV = pC(VD − VC) = −νR TA

(

1 − V
A

V
C

)

.

Thus,

WCYC = νRTA

[

ln

(

V
C

V
B

)

− 1 +
V

A

V
C

]

.
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(b) Setting V
B

= (1 − x)V
A

+ xV
C

, and defining r ≡ V
A
/V

C
, we have

WCYC = νR TA

(

− ln
(

x + (1 − x) r
)

+ 1 − r
)

,

and setting W
CYC

= 0 we obtain x = x∗, with

x∗ =
er−1 − r

1 − r
.

For V
A

= 1.0L and V
C

= 5.0L, we have r = 1
5 and x∗ = 0.31, corresponding to V

B
= 2.2L.

(5) A strange material found stuck to the bottom of a seat in Warren Lecture Hall 2001
obeys the thermodynamic relation E(S, V,N) = aS6/V 2N3, where a is a dimensionful
constant.

(a) What are the MKS dimensions of a?

(b) Find the equation of state relating p, V , N , and T .

(c) Find the coefficient of thermal expansion α = 1
V

(

∂V
∂T

)

p
. Express your answer in terms

of intensive quantities p, T , and n = N/V .

(d) Find the isothermal compressibility κ = − 1
V

(

∂V
∂p

)

T
. Express your answer in terms of

intensive quantities p, T , and n = N/V .

Solution :

(a) From [E] = J, [S] = J/K, and [V ] = m3, we obtain [a] = m6 K5/J5.

(b) We have

T =

(

∂E

∂S

)

V N

=
6aS5

V 2N3
, p = −

(

∂E

∂V

)

SN

=
2aS6

V 3N3
.

We can eliminate S by finding the ratio T 6/p5:

T 6

p5
=

66

25
· aV 3

N3
= 1458 an−3 .

This is an equation of state, which we can recast as

p(T, n) =
T 6/5 n3/5

(1458 a)1/5
.

Contrast this with the ideal gas law, p = nk
B
T . For parts (c) and (d) it is useful to take the

logarithm, and obtain

6 lnT = 5 ln p + 3 ln V − 3 ln N + ln(1458 a) .
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(c) The coefficient of volume expansion is

αp =
1

V

(

∂V

∂T

)

pN

=

(

∂ ln V

∂T

)

pN

=
2

T
.

(d) The isothermal compressibility is

κT = − 1

V

(

∂V

∂p

)

TN

= −
(

∂ ln V

∂p

)

TN

=
5

3 p
.
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PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #7 SOLUTIONS

(1) Using the chain rule from multivariable calculus (see §2.16 of the lecture notes), solve
the following:

(a) Find (∂N/∂T )S,p in terms of T , N , S, and Cp,N .

(b) Experimentalists can measure CV,N but for many problems it is theoretically easier
to work in the grand canonical ensemble, whose natural variables are (T, V, µ). Show
that

CV,N =

(

∂E

∂T

)

V,z

−
(

∂E

∂z

)

T,V

(

∂N

∂T

)

V,z

/ (

∂N

∂z

)

T,V

,

where z = exp(µ/k
B
T ) is the fugacity.

Solution :

(a) We have

(

∂N

∂T

)

S,p

=
∂(N,S, p)

∂(T, S, p)
=

∂(N,S, p)

∂(N,T, p)
· ∂(N,T, p)

∂(T, S, p)
= −

NCp,N

TS
.

(b) Using the chain rule,

CV,N =
∂(E,V,N)

∂(T, V,N)
=

∂(E,V,N)

∂(T, V, z)
· ∂(T, V, z)

∂(T, V,N)

=

[

(

∂E

∂T

)

V,z

(

∂N

∂z

)

T,V

−
(

∂E

∂z

)

T,V

(

∂N

∂T

)

V,z

]

·
(

∂z

∂N

)

T,V

=

(

∂E

∂T

)

V,z

−
(

∂E

∂z

)

T,V

(

∂N

∂T

)

V,z

/(

∂N

∂z

)

T,V

.

(2) Consider the equation of state,

p =
R2T 2

a + vRT
,

where v = NAV/N is the molar volume and a is a constant.

(a) Find an expression for the molar energy ε(T, v). Assume that in the limit v → ∞,
where the ideal gas law pv = RT holds, that the gas is ideal with ε(v → ∞, T ) =
1
2fRT .

1



(b) Find the molar specific heat cV,N .

Solution :

(a) We fix N throughout the analysis. As shown in §2.10.2 of the lecture notes,
(

∂E

∂V

)

T,N

= T

(

∂p

∂T

)

V,N

− p .

Defining the molar energy ε = E/ν = NAE/N and the molar volume v = V/ν = NAV/N ,
we can write the above equation as

(

∂ε

∂v

)

T

= T

(

∂p

∂T

)

v

− p = p

[

(

∂ ln p

∂ lnT

)

v

− 1

]

.

Now from the equation of state, we have

ln p = 2 ln T − ln(a + vRT ) + 2 ln R ,

hence
(

∂ ln p

∂ ln T

)

v

= 2 − vRT

a + vRT
.

Plugging this into our formula for
(

∂ε
∂v

)

T
, we have

(

∂ε

∂v

)

T

=
a p

a + vRT
=

aR2T 2

(a + vRT )2
.

Now we integrate with respect to v at fixed T , using the method of partial fractions. After
some grinding, we arrive at

ε(T, v) = ω(T ) − aRT

(a + vRT )
.

In the limit v → ∞, the second term on the RHS tends to zero. This is the ideal gas limit,
hence we must have ω(T ) = 1

2fRT , where f = 3 for a monatomic gas, f = 5 for diatomic,
etc. Thus,

ε(T, v) = 1
2fRT − aRT

a + vRT
= 1

2fRT − a

v
+

a2

v(a + vRT )
.

(b) To find the molar specific heat, we compute

cV,N =

(

∂ε

∂T

)

v

= 1
2fR − a2R

(a + vRT )2
.

(3) A van der Waals gas undergoes an adiabatic free expansion from initial volume Vi to
final volume Vf . The equation of state is given in §2.10.3 of the lecture notes. The number
of particles N is held constant.
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(a) If the initial temperature is Ti, what is the final temperature Tf?

(b) Find an expression for the change in entropy ∆S of the gas.

Solution :

(a) This part is done for you in §2.10.5 of the notes. One finds

∆T = Tf − Ti =
2a

fR

(

1

vf

− 1

vi

)

.

(b) Consider a two-legged thermodynamic path, consisting first of a straight leg from
(Ti, Vi) to (Ti, Vf), and second of a straight leg from (Ti, Vf) to (Tf , Vf). We then have

∆S =

∆S
1

︷ ︸︸ ︷

V
f

∫

V
i

dV

(

∂S

∂V

)

T
i
,N

+

∆S
2

︷ ︸︸ ︷

T
f

∫

T
i

dT

(

∂S

∂T

)

V
f
,N

.

Along the first leg we use

(

∂S

∂V

)

T,N

=

(

∂p

∂T

)

V,N

=
R

v − b

and we then find

∆S1 = R ln

(

vf − b

vi − b

)

.

Along the second leg, we have

∆S2 =

T
f

∫

T
i

dT

(

∂S

∂T

)

V
f
,N

=

T
f

∫

T
i

dT
CV

f
,N

T
= 1

2fR

T
f

∫

T
i

dT

T
= 1

2fR ln

(

Tf

Ti

)

.

Thus,

∆S = R ln

(

vf − b

vi − b

)

+ 1
2fR ln

[

1 +
2a

fRTi

(

1

vf

− 1

vi

)

]

.
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PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #8 SOLUTIONS

(1) For the Dieterici equation of state,

p(V − Nb) = Nk
B
T e−Na/V k

B
T ,

find the virial coefficients B2(T ) and B3(T ).

Solution :

We first write the equation of state as p = (n, T ) where n = N/V :

p =
nk

B
T

1 − bn
e−an/k

B
T .

Next, we expand in powers of the density n:

p = nk
B
T

(

1 + bn + b2n2 + . . .
) (

1 − βan + 1
2β2a2n2 + . . .

)

= nk
B
T

[

1 +
(

b − βa
)

n +
(

b2 − βab + 1
2β2a2

)

n2 + . . .
]

= nk
B
T

[

1 + B2 n + B3 n2 + . . .
]

,

where β = 1/k
B
T . We can now read off the virial coefficients:

B2(T ) = b − a

k
B
T

, B3 = b2 − ab

k
B
T

+
a2

2k2
B
T 2

.

(2) Consider a gas of particles with dispersion ε(k) = ε0 |kℓ|5/2, where ε0 is an energy scale
and ℓ is a length scale.

(a) Find the density of states g(ε) in d = 2 and d = 3 dimensions.

(b) Find the virial coefficients B2(T ) and B3(T ) in d = 2 and d = 3 dimensions.

(c) Find the heat capacity CV (T ) in d = 3 dimensions for photon statistics.

Solution :

(a) For ε(k) = ε0 |kℓ|α we have

g(ε) =

∫

ddk

(2π)d
δ
(

ε − ε(k)
)

=
Ωd

(2π)

∞
∫

0

dk kd−1 δ
(

k − (ε/ε0)
1/α/ℓ

)

αε0ℓ
α kα−1

=
Ωd

(2π)d
1

αε0ℓ
d

(

ε

ε0

)
d
α
−1

Θ(ε) .

1



Thus, for α = 5
2 ,

gd=2(ε) =
1

5πε0ℓ
2

(

ε

ε0

)

−1/5

Θ(ε) , gd=3(ε) =
1

5πε0ℓ
3

(

ε

ε0

)1/5

Θ(ε) .

(b) We must compute the coefficients

Cj =

∞
∫

−∞

dε g(ε) e−jε/k
B

T =
Ωd

(2π)d
1

αε0ℓ
d

∞
∫

0

dε

(

ε

ε0

)
d
α
−1

e−jε/k
B

T

=
Ωd Γ(d/α)

(2π)d
1

αℓd

(

k
B
T

jε0

)d/α

≡ j−d/α λ−d
T ,

where

λT ≡ 2πℓ
[

Ωd Γ
(

d
α

)

/α
]1/d

(

ε0

k
B
T

)1/α

.

Then

B2(T ) = ∓ C2

2C2
1

= ∓2−
(

d
α

+1
)

λd
T

B3(T ) =
C2

2

C4
1

− 2C3

C3
1

=

[

4−
d
α − 2

3 · 3− d
α

]

λ2d
T .

We have α = 5
2 , so d

α = 4
5 for d = 2 and 6

5 for d = 3.

(c) For photon statistics, the energy is

E(T, V ) = V

∞
∫

−∞

dε g(ε) ε
1

eε/k
B

T − 1
=

V Ωd ε0

(2πℓ)d α
Γ
(

d
α + 1

)

ζ
(

d
α + 1

)

(

k
B
T

ε0

)
d
α

+1

Thus,

CV =
∂E

∂T
=

V Ωd k
B

(2πℓ)d α
Γ
(

d
α + 2

)

ζ
(

d
α + 1

)

(

k
B
T

ε0

)
d
α

.

(3) At atmospheric pressure, what would the temperature T have to be in order that the
electromagnetic energy density should be identical to the energy density of a monatomic
ideal gas?

Solution :

The pressure is p = 1.0 atm ≃ 105 Pa. We set

E

V
= 3

2 p =
2π2

30

(k
B
T )4

(~c)3
,

2



and solve for T :

T =
1

1.38 × 10−23 J/K
·
[

45

2π2
· (105 Pa) ·

(

1970 eV Å · 1.602 × 10−19 J

eV
· 10−10 m

Å

)3
]1/4

= 1.19 × 105 K .

(4) Find the internal energy and heat capacity for a two-dimensional crystalline insulator,
according to the Debye model.

Solution :

We have

Ω(T, V ) = Nk
B
T

∞
∫

0

dω g(ω) ln

[

2 sinh

(

~ω

2k
B
T

)

]

.

The internal energy is given by

E(T, V ) =
∂(βΩ)

∂β
= 1

2 N

∞
∫

0

dω g(ω) ~ω ctnh

(

~ω

2k
B
T

)

.

In the three-dimensional Debye model, the phonon density of states per unit cell is

g(ω) =
9ω2

ω3
D

Θ(ω
D
− ω) ,

where ω
D

is the Debye frequency. Thus,

E(T ) =
9N~

2ω3
D

ω
D

∫

0

dω ω3 ctnh

(

~ω

2k
B
T

)

=
72N

(~ωD)3
(k

B
T )4

~ω
D

2k
B

T
∫

0

ds s3 ctnh (s) .

In d = 2 dimensions, we must replace the phonon density of states with

g(ω) =
4ω

ω2
D

Θ(ω
D
− ω) .
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This guarantees that the integrated phonon density of states per unit cell is 2, which is the
number of acoustic phonon modes in two dimensions. We then have

E(T ) =
2~

ω2
D

N

ω
D

∫

0

dω ω2 ctnh

(

~ω

2k
B
T

)

=
16N

(~ωD)2
(k

B
T )3

~ω
D

2k
B

T
∫

0

ds s2 ctnh (s) .

The heat capacity is

CV =
∂E

∂T
=

N~
2

k
B
T 2ω2

D

ω
D

∫

0

dω ω3 csch2

(

~ω

2k
B
T

)

= 16Nk
B

(

k
B
T

~ωD

)2

~ω
D

2k
B

T
∫

0

ds s2 csch 2(s) .

One can check that limT→∞
CV (T ) = 2Nk

B
, which is the appropriate Dulong-Petit limit.
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PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #9 SOLUTIONS

(1) For a system of noninteracting S = 0 bosons obeying the dispersion ε(k) = ~v|k|.

(a) Find the density of states per unit volume g(ε).

(b) Determine the critical temperature for Bose-Einstein condensation in three dimen-
sions.

(c) Find the condensate fraction n0/n for T < Tc.

(d) For this dispersion, is there a finite transition temperature in d = 2 dimensions? If

not, explain why. If so, compute T
(d=2)
c .

Solution :

(a) The density of states in d dimensions is

g(ε) =

∫

ddk

(2π)d
δ(ε − ~vk) =

Ωd

(2π)d
εd−1

(~v)d
.

(b) The condition for T = Tc is to write n = n(Tc, µ = 0):

n =

∞
∫

0

dε
g(ε)

eε/k
B

T
c − 1

=
1

2π2(~v)3

∞
∫

0

dε
ε2

eε/k
B

T
c − 1

=
ζ(3)

π2

(

k
B
Tc

~v

)3

.

Thus,

k
B
Tc =

(

π2

ζ(3)

)1/3

~v n1/3 .

(c) For T < Tc, we have

n = n0 +
ζ(3)

π2

(

k
B
T

~v

)3

.

Thus,
n0

n
= 1 −

(

T

Tc(n)

)3

.

(d) In d = 2 we have

n =
1

2π(~v)2

∞
∫

0

dε
ε

eε/k
B

T
c − 1

=
ζ(2)

2π

(

k
B
Tc

~v

)2

1



and hence

k
B
T (d=2)

c = ~v

√

2πn

ζ(2)
.

(2) Using the argument we used in class and in §5.4.2 of the notes, predict the surface
temperatures of the remaining planets in our solar system. In each case, compare your
answers with the most reliable source you can find. In cases where there are discrepancies,
try to come up with a convincing excuse.

Solution :

Relevant planetary data are available from

http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

and from Wikipedia. According to the derivation in the notes, we have

T =

(

R
⊙

2a

)1/2

T
⊙

,

where R
⊙

= 6.96 × 105 km and T
⊙

= 5780K. From this equation and the reported values
for a for each planet, we obtain the following table:

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto

a (108 km) 0.576 1.08 1.50 2.28 7.78 14.3 28.7 45.0 59.1

T obs
surf (K) 340∗ 735† 288‡ 210 112 84 53 55 44

T pred
surf (K) 448 327 278 226 122 89.1 63.6 50.8 44.3

Table 1: Planetary data from GSU web site and from Wikipedia. Observed temperatures
are averages. ∗ mean equatorial temperature. † mean temperature below cloud cover.

Note that we have included Pluto, because since my childhood Pluto has always been the
ninth planet to me. We see that our simple formula works out quite well except for Mer-
cury and Venus. Mercury, being so close to the sun, has enormous temperature fluctuations
as a function of location. Venus has a whopping greenhouse effect.

(3) Read carefully the new and improved §5.5.4 of the lecture notes (“Melting and the
Lindemann criterion”). Using the data in Table 5.1, and looking up the atomic mass and
lattice constant of tantalum (Ta), find the temperature T

L
where the Lindemann criterion

predicts Ta should melt.
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Solution :

One finds the mass of tantalum is M = 181 amu, and the lattice constant is a = 3.30 Å.
Thus,

Θ⋆ =
109K

M [amu]
(

a[Å]
)2 = 55.3mK .

From the table in the lecture notes, the Debye temperature is Θ
D

= 246K and the melting
point is Tmelt = 2996K. The Lindemann temperature is

T
L

=

(

η2 Θ
D

Θ⋆
− 1

)

Θ
D

4
= 2674K ,

where η = 0.10. Close enough for government work.

(4) For ideal Fermi gases in d = 1, 2, and 3 dimensions, compute at T = 0 the average
fermion velocity.

Solution :

At T = 0 the average velocity is

〈v〉 =

k
F

∫

0

dk kd−1 ~k

m

/ k
F

∫

0

dk kd−1 =
d

d + 1
· ~k

F

m
.

The number density is

n =
gΩd

(2π)d

k
F

∫

0

dk kd−1 =
gΩd kd

F

(2π)d d
⇒ k

F
= 2π

(

d

gΩd

)1/d

n1/d .

Putting these together we can obtain the average velocity in terms of the density n and
physical constants. (OK! OK! I mean average speed!)

(5) Consider a three-dimensional Fermi gas of S = 1
2 particles obeying the dispersion

relation ε(k) = A |k|4.

(a) Compute the density of states g(ε).

(b) Compute the molar heat capacity.

(c) Compute the lowest order nontrivial temperature dependence for µ(T ) at low tem-
peratures. I.e. compute the O(T 2) term in µ(T ).
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Solution :

(a) The density of statesin d = 3 (g = 2S + 1 = 2) is given by

g(ε) =
1

π2

∞
∫

0

dk k2 δ
(

ε − ε(k)
)

=
1

π2
k2(ε)

dk

dε

∣

∣

∣

∣

∣

k=(ε/A)1/4

=
ε−1/4

4π2A3/4
.

(b) The molar heat capacity is

cV =
π2

3n
R g(ε

F
) k

B
T =

π2R

4
· k

B
T

εF

,

where ε
F

= ~
2k2

F
/2m can be expressed in terms of the density using k

F
= (3π2n)1/3, which

is valid for any isotropic dispersion in d = 3. In deriving this formula we had to express

the density n, which enters in the denominator in the above expression, in terms of ε
F
. But

this is easy:

n =

ε
F

∫

0

dε g(ε) =
1

3π2

(

ε
F

A

)3/4

.

(c) We have (Lecture Notes, §5.7.5)

δµ = −π2

6
(k

B
T )2

g′(ε
F
)

g(ε
F
)

=
π2

24
· (k

B
T )2

εF

.

Thus,

µ(n, T ) = ε
F
(n) +

π2

24
· (k

B
T )2

ε
F
(n)

+ O(T 4) ,

where ε
F
(n) = ~

2

2m (3π2n)2/3.
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PHYSICS 140A : STATISTICAL PHYSICS

MIDTERM EXAM SOLUTIONS

Consider a classical gas of indistinguishable particles in three dimensions with Hamilto-
nian

Ĥ =
N

∑

i=1

{

A |pi|3 − µ0HSi

}

,

where A is a constant, and where Si ∈ {−1 , 0 , +1} (i.e. there are three possible spin po-
larization states).

(a) Compute the free energy Fgas(T,H, V,N).

(b) Compute the magnetization density mgas = Mgas/V as a function of temperature, pres-
sure, and magnetic field.

The gas is placed in thermal contact with a surface containing Ns adsorption sites, each
with adsorption energy −∆. The surface is metallic and shields the adsorbed particles
from the magnetic field, so the field at the surface may be approximated by H = 0.

(c) Find the Landau free energy for the surface, Ω
surf

(T,Ns, µ).

(d) Find the fraction f0(T, µ) of empty adsorption sites.

(e) Find the gas pressure p∗(T,H) at which f0 = 1
2 .

Solution :

(a) The single particle partition function is

ζ(T, V,H) = V

∫

d3p

h3
e−Ap3/k

B
T

1
∑

S=−1

eµ
0
HS/k

B
T =

4πV k
B
T

3Ah3
·
(

1 + 2 cosh(µ0H/k
B
T )

)

.

The N -particle partition function is Zgas(T,H, V,N) = ζN/N ! , hence

Fgas = −Nk
B
T

[

ln

(

4πV k
B
T

3NAh3

)

+ 1

]

− Nk
B
T ln

(

1 + 2 cosh(µ0H/k
B
T )

)

(b) The magnetization density is

mgas(T, p,H) = − 1

V

∂F

∂H
=

pµ0

k
B
T

· 2 sinh(µ0H/k
B
T )

1 + 2 cosh(µ0H/k
B
T )

We have used the ideal gas law, pV = Nk
B
T here.

(c) There are four possible states for an adsorption site: empty, or occupied by a particle
with one of three possible spin polarizations. Thus, Ξ

surf
(T,Ns, µ) = ξNs , with

ξ(T, µ) = 1 + 3 e(µ+∆)/k
B

T .

1



Thus,

Ωsurf(T,Ns, µ) = −NskB
T ln

(

1 + 3 e(µ+∆)/k
B

T
)

(d) The fraction of empty adsorption sites is 1/ξ, i.e.

f0(T, µ) =
1

1 + 3 e(µ+∆)/k
B

T

(e) Setting f0 = 1
2 , we obtain the equation 3 e(µ+∆)/k

B
T = 1, or

eµ/k
B

T = 1
3 e−∆/k

B
T .

We now need the fugacity z = eµ/k
B

T in terms of p, T , and H . To this end, we compute the
Landau free energy of the gas,

Ωgas = −pV = −k
B
T ζ eµ/k

B
T .

Thus,

p∗(T,H) =
k

B
T ζ

V
eµ/k

B
T =

4π(k
B
T )2

9Ah3
·
(

1 + 2 cosh(µ0H/k
B
T )

)

e−∆/k
B

T

2



PHYSICS 140A : STATISTICAL PHYSICS

FINAL EXAMINATION

(do all four problems)

(1) The entropy for a peculiar thermodynamic system has the form

S(E,V,N) = Nk
B

{

(

E

Nε0

)1/3

+

(

V

Nv0

)1/2
}

,

where ε0 and v0 are constants with dimensions of energy and volume, respectively.

(a) Find the equation of state p = p(T, V,N).
[5 points]

(b) Find the work done along an isotherm in the (V, p) plane between points A and B in
terms of the temperature T , the number of particles N , and the pressures p

A
and p

B
.

[10 points]

(c) Find µ(T, p).
[10 points]

Solution :

(a) (a) We have

p = T

(

∂S

∂V

)

E,N

=
k

B
T

2v0

(

V

Nv0

)

−1/2

.

(b) We use the result of part (a) to obtain

W
AB

=

B
∫

A

p dV = Nk
B
T

(

V

Nv0

)1/2
∣

∣

∣

∣

∣

B

A

=
N(k

B
T )2

2v0

(

1

pB

− 1

pA

)

.

(c) We have

µ = T

(

∂S

∂N

)

E,V

= 2
3k

B
T

(

E

Nε0

)1/3

+ 1
2k

B
T

(

V

Nv0

)1/2

.

The temperature is given by

1

T
=

(

∂S

∂E

)

V,N

=
k

B

3ε0

(

E

Nε0

)

−2/3

.

Thus, using

E

Nε0

=

(

k
B
T

3ε0

)3/2

,
V

Nv0

=

(

k
B
T

2p v0

)2

,

1



we obtain

µ(T, p) =
2(k

B
T )3/2

3
√

3 ε
1/2
0

+
(k

B
T )2

4pv0

.

(2) Consider a set of N noninteracting crystalline defects characterized by a dipole mo-
ment p = p0 n̂, where n̂ can point in any of six directions: ±x̂, ±ŷ, and ±ẑ. In the absence
of an external field, the energies for these configurations are ε(±x̂) = ε(±ŷ) = ε0 and
ε(±ẑ) = 0.

(a) Find the free energy F (T,N).
[10 points]

(b) Now let there be an external electric field E = E ẑ. The energy in the presence of the
field is augmented by ∆ε = −p·E. Compute the total dipole moment P =

∑

i〈pi〉.
[5 points]

(c) Compute the electric susceptibility χzz
E = 1

V
∂Pz

∂Ez
at E = 0.

[5 points]

(d) Find an expression for the entropy S(T,N,E) when ε0 = 0.
[5 points]

Solution :

(a) We have Z = ξN where the single particle partition function is

ξ = Tr e−βh = 4 e−βε
0 + 2 .

Thus,

F (T,N) = −k
B
T ln Z = −Nk

B
T ln

(

2 + 4 e−ε
0
/k

B
T
)

.

(b) Including effects of the electric field, we have

F (T,N) = −k
B
T ln Z = −Nk

B
T ln

(

2 cosh
(

p
0
E

k
B

T

)

+ 4 e−ε
0
/k

B
T
)

.

The electric polarization is clearly aligned along ẑ, i.e. P = P (T,N,E) ẑ, with

P = −
(

∂F

∂E

)

T,N

=
Np0 sinh(p0E/k

B
T )

2 e−ε
0
/k

B
T + cosh(p0E/k

B
T )

.

(c) We expand P to linear order in E and differentiate, yielding

χzz
E =

N

V
· 1

2 e−ε
0
/k

B
T + 1

· p2
0

k
B
T

.

2



(d) Setting ε0 = 0, we have

F (T,N) = −Nk
B
T ln

(

4 + 2 cosh
(

p0 E/k
B
T
)

)

.

The entropy is then

S = −
(

∂F

∂T

)

N

= Nk
B

[

ln
(

4 + 2 cosh
(

p0E/k
B
T
)

)

−
(

p0E/k
B
T
)

sinh
(

p0E/k
B
T
)

2 + cosh
(

p0E/k
B
T
)

]

.

(3) A bosonic gas is known to have a power law density of states g(ε) = Aεσ per unit
volume, where σ is a real number.

(a) Experimentalists measure Tc as a function of the number density n and make a log-
log plot of their results. They find a beautiful straight line with slope 3

7 . That is,

Tc(n) ∝ n3/7. Assuming the phase transition they observe is an ideal Bose-Einstein
condensation, find the value of σ.
[5 points]

(b) For T < Tc, find the heat capacity CV .
[5 points]

(c) For T > Tc, find an expression for p(T, z), where z = eβµ is the fugacity. Recall the
definition of the polylogarithm (or generalized Riemann zeta function)1,

Liq(z) ≡ 1

Γ(q)

∞
∫

0

dt
tq−1

z−1et − 1
=

∞
∑

n=1

zn

nq
,

where Γ(q) =
∞
∫

0

dt tq−1 e−t is the Gamma function.

[5 points]

(d) If these particles were fermions rather than bosons, find (i) the Fermi energy ε
F
(n)

and (ii) the pressure p(n) as functions of the density n at T = 0.
[10 points]

Solution :

(a) At T = Tc, we have µ = 0 and n0 = 0, hence

n =

∞
∫

−∞

dε
g(ε)

eε/k
B

T
c − 1

= Γ(1 + σ) ζ(1 + σ)A (k
B
Tc)

1+σ .

1In the notes and in class we used the notation ζq(z) for the polylogarithm, but for those of you who have
yet to master the scribal complexities of the Greek ζ, you can use the notation Liq(z) instead.

3



Thus, Tc ∝ n
1

1+σ = n3/7 which means σ = 4
3 .

(b) For T < Tc we have µ = 0, but the condensate carries no energy. Thus,

E = V

∞
∫

−∞

dε
ε g(ε)

eε/k
B

T − 1
= Γ(2 + σ) ζ(2 + σ)A (k

B
T )2+σ

= Γ
(

10
3

)

ζ
(

10
3

)

A (k
B
T )10/3 .

Thus,
CV = Γ

(

13
3

)

ζ
(

10
3

)

A (k
B
T )7/3 ,

where we have used z Γ(z) = Γ(z + 1).

(c) The pressure is p = −Ω/V , which is

p(T, z) = −k
B
T

∞
∫

−∞

dε g(ε) ln
(

1 − z e−ε/k
B

T
)

= −Ak
B
T

∞
∫

0

dε εσ ln
(

1 − z e−ε/k
B

T
)

=
A

1 + σ

∞
∫

0

dε
ε1+σ

z−1 eε/k
B

T − 1
= Γ(1 + σ)A (k

B
T )2+σ Li2+σ(z)

= Γ
(

7
3

)

A (k
B
T )10/3 Li10/3(z) .

(d) The Fermi energy is obtained from

n =

ε
F
∫

0

dε g(ε) =
Aε1+σ

F

1 + σ
⇒ ε

F
(n) =

(

(1 + σ)n

A

)
1

1+σ

=

(

7n

3A

)3/7

.

We obtain the pressure from p = −
(

∂E
∂V

)

N
. The energy is

E = V

ε
F
∫

0

dε g(ε) ε = V · Aε2+σ
F

2 + σ
∝ V −

1

1+σ .

Thus, p = 1
1+σ · E

V , i.e.

p(n) =
Aε2+σ

F

(1 + σ)(2 + σ)
= 3

10

(

7
3

)3/7
A−3/7n10/7 .

(4) Provide brief but substantial answers to the following:

4



(a) Consider a three-dimensional gas of N classical particles of mass m in a uniform
gravitational field g. Assume z ≥ 0 and g = −gẑ. Find the heat capacity CV .
[7 points]

(b) Consider a system with a single phase space coordinate φ which lives on a circle.
Now consider three dynamical systems on this phase space:

(i) φ̇ = 0 , (ii) φ̇ = 1 , (iii) φ̇ = 2 − cos φ .

For each of these systems, tell whether it is recurrent, ergodic, both, or neither, and
explain your reasoning.
[6 points]

(c) Explain Boltzmann’s H-theorem.
[6 points]

(d) ν moles of gaseous Argon at an initial temperature T
A

and volume V
A

= 1.0 L un-
dergo an adiabatic free expansion to an intermediate state of volume V

B
= 2.0 L.

After coming to equilibrium, this process is followed by a reversible adiabatic ex-
pansion to a final state of volume V

C
= 3.0 L. Let S

A
denote the initial entropy of the

gas. Find the temperatures T
B,C and the entropies S

B,C. Then repeat the calculation
assuming the first expansion (from A to B) is a reversible adiabatic expansion and
the second (from B to C) an adiabatic free expansion.
[6 points]

Solution :

(a) The partition function is

Z =
AN

N !

(

λ−3
T

∞
∫

0

dz e−mgz/k
B

T

)N

=
1

N !

(

k
B
T A

mgλ3
T

)N

,

where A is the cross-sectional area. Thus,

F = −Nk
B
T ln

(

k
B
T A

Nmgλ3
T

)

− Nk
B
T .

We then have

CV = −T
∂2F

∂T 2
= 5

2Nk
B

.

(b) Recurrence means a system will come arbitrarily close to revisiting any allowed point
in phase space. Ergodicity means time averages may be replaced by phase space averages.
With these definitions, we see that

(i) φ̇ = 0 : recurrent but not ergodic

(ii) φ̇ = 1 : both recurrent and ergodic

(iii) φ̇ = 2 − cos φ : recurrent but not ergodic .

5



If by recurrent we mean ”in every neighborhood N of a point φ0 there exists a point which
returns to N after a finite number of iterations of the τ -advance mapping gτ , then φ̇ = 0
surely is recurrent. because all points remain fixed under these dynamics. With φ̇ = 1,
we have φ(t) = t, which winds around the phase space with uniform angular frequency.
This is both recurrent as well as ergodic. For φ̇ = 2 − cos φ, we have φ̇ > 0 so the motion
is constantly winding around the phase space, i.e. it doesn’t get stuck at a fixed point. So
it is recurrent, but not ergodic, because the phase space velocity is relatively slow in the
vicinity of φ = 0 and relatively fast in the vicinity of φ = π, and time averages will weigh
more heavily the neighborhood of φ = 0.

(c) If a probability distribution Pi evolves according to a master equation,

Ṗi =
∑

j

(

WjiPj − WijPi

)

,

then one can construct a quantity H(t) which is a function of the distribution and which
satisfies Ḣ ≤ 0. Explicitly, one has

H(t) =
∑

i

Pi(t) ln
(

Pi(t)/P
eq
i

)

,

where P eq
i is the equilibrium distribution, which is a fixed point of the master equation.

Any such probability distribution therefore evolves irreversibly.

(d) Argon is a monatomic ideal gas, thus γ = cp/cV = 5
3 . The adiabatic equation of

state is d(TV γ−1) = 0. The entropy of a monatomic ideal gas is S = 3
2Nk

B
ln(E/N) +

Nk
B

ln(V/N) + Na where a is a constant. During an adiabatic free expansion, ∆E = Q =
W = 0. We can now construct the following table:

T
B

T
C

S
B
− S

A
S

C
− S

A

AB free / BC reversible T
A

(3/2)−2/3 T
A

νR ln 2 νR ln 2

AB reversible / BC free 2−2/3 T
A

2−2/3 T
A

0 νR ln(3/2)

(5) Match the Jonathan Coulton song lines in the left column with their following lines in
the right column.
[30 quatloos extra credit]

(a) That was a joke – haha – fat chance (1) I can see the day unfold in front of me

(b) Saw a vision in his head (2) I’m glad to see you take constructive criticism well

(c) I try to medicate my concentration haze (3) And this mountain is covered with wolves

(d) I’ve been patient, I’ve been gracious (4) A bulbous pointy form

(e) I guess we’ll table this for now (5) Hearing the whirr of the servos inside

(f) She’ll eye me suspiciously (6) Anyway this cake is great

Solution :
(a) 6 (b) 4 (c) 1 (d) 3 (e) 2 (f) 5

6



PHYSICS 140B : STATISTICAL PHYSICS

HW ASSIGNMENT #1 SOLUTIONS

(1) Consider a spin-1 Ising chain with Hamiltonian

Ĥ = −J
∑

n

Sn Sn+1 ,

where each Sn takes possible values {−1, 0, 1}.

(a) Find the transfer matrix for the this model.

(b) Find an expression for the free energy F (T, J,N) for an N -site chain and for an N -site
ring.

(c) Suppose a magnetic field term Ĥ ′ = −µ0H
∑

n Sn is included. Find the transfer matrix.

Solution :

(a) The transfer matrix is

RSS′ = eβJSS′

=





eβJ 1 e−βJ

1 1 1
e−βJ 1 eβJ



 .

(b) The partition function is

Zring = Tr
(

RN
)

, Zchain =
∑

S,S′

[

RN−1
]

SS′
.

We can derive the eigenvalues and eigenvectors of R almost by inspection. Clearly one
eigenvector is

ψ0 =
1√
2





1
0
−1



 , λ0 = 2 sinhβJ .

The remaining two eigenvectors are orthogonal to ψ(0) and may be written as

ψ
±

=
1√

2 + α2





1
α
1



 ,

where there are two possible solutions for α which we call α
±

. ApplyingR to ψ
±

, we have

2 cosh βJ + α = λ

2 + α = λα

Using the second equation to solve for λ, we have λ = 1+2α−1. Plugging this into the first
equation, we obtain

α
±

= 1
2 − cosh βJ ±

√

(

1
2 − cosh βJ

)2
+ 2

1



and

λ
±

= 1
2 + cosh βJ ±

√

9
4 − cosh βJ + cosh2βJ

The roots α
±

satisfy α+α−
= −2, which guarantees that 〈ψ+ |ψ

−
〉 = 0. Note that

〈S |ψ0 〉〈ψ0 |S′ 〉 =
1

2





1 0 −1
0 0 0
−1 0 1





〈S |ψ
±
〉〈ψ

±
|S′ 〉 =

1

2 + α2
±





1 α
±

1
α
±

α2
±

α
±

1 α
±

1





and, for any J ,

[

RJ
]

SS′
= λJ

+ · 〈S |ψ+ 〉〈ψ+ |S′ 〉 + λJ
0 · 〈S |ψ0 〉〈ψ0 |S′ 〉 + λJ

−
· 〈S |ψ

−
〉〈ψ

−
|S′ 〉 .

Thus,

Zring = λN
+ + λN

0 + λN
−

Zchain = λN−1
+ ·

(

α+ + 2
)2

α2
+ + 2

+ λN−1
−

·
(

α
−

+ 2
)2

α2
−

+ 2

=

(

2λ+ − 3
)2 · λN−1

+

2
(

λ+ − 2
)2

+ 1
+

(

2λ
−
− 3

)2 · λN−1
−

2
(

λ
−
− 2

)2
+ 1

.

(c) With a magnetic field, we have

RSS′ = eβJSS′

eβµ
0
H(S+S′)/2 =





eβ(J+µ
0
H) eβµ

0
H/2 e−βJ

eβµ
0
H/2 1 e−βµ

0
H/2

e−βJ e−βµ
0
H/2 eβ(J−µ

0
H)



 .

(2) Use the high temperature expansion to derive the spin-spin correlation functions for a
spin-1

2 (σn = ±1) Ising chain and Ising ring. Compare with the results in chapter 6 of the
lecture notes.

Solution :

The spin-spin correlation function Ckl = 〈σk σl〉 is expressed as a ratio Ykl/Z as in eqn.
6.51 of the Lecture Notes (LN). For the chain, the only diagram which contributes to Z is
Γ = {∅}, i.e. the trivial empty lattice. This is because there is no way to form closed loops
on a chain. Thus Zring = 2N (cosh βJ)N−1 since the number of links is N

L
= N − 1 (see LN

eqn. 6.45). For the chain, in addition to the empty lattice, there is one closed loop that can
be formed which includes every link of the chain. Thus Zchain = 2N (cosh βJ)N

(

1 + xN
)

,
where x = tanhβJ . As for the numerator Ykl, on the chain there is only one possible string,

2
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Figure 1: Diagrams for the numerator of the high temperature expansion of the spin-spin
correlation function on an Ising ring and chain.

shown in fig. 1, which extends between sites k and l. Thus Y chain
kl = 2N (cosh βJ)N−1x|k−l|.

On the ring there are two possible strings, since the ring is multiply connected. Thus

Y ring
kl = 2N (cosh βJ)N

(

x|k−l| + xN−|k−l|
)

. Therefore,

Cchain
kl = x|k−l| , Cring

kl =
x|k−l| + xN−|k−l|

1 + xN
.

(3) Consider an N -site Ising ring, with N even. Let K = J/k
B
T be the dimensionless

ferromagnetic coupling (K > 0), and H(K,N) = H/k
B
T = −K∑N

n=1 σn σn+1 the dimen-

sionless Hamiltonian. The partition function is Z(K,N) = Tr e−H(K,N). By ‘tracing out’
over the even sites, show that

Z(K,N) = e−N ′c Z(K ′, N ′) ,

where N ′ = N/2, c = c(K) and K ′ = K ′(K). Thus, the partition function of an N site ring
with dimensionless coupling K is related to the partition function for the same model on an
N ′ = N/2 site ring, at some renormalized coupling K ′, up to a constant factor. The essential
step in the proof is showing that

∑

σ
2k

=±

eKσ
2k

(σ
2k−1

+σ
2k+1

) = e−c eK
′σ

2k−1
σ
2k+1

for some c and K ′.

Solution :

3



We have

∑

σ
2k

=±

eKσ
2k

(σ
2k−1

+σ
2k+1

) = 2cosh
(

Kσ2k−1 +Kσ2k+1

)

≡ e−c eK
′σ

2k−1
σ
2k+1

Consider the cases (σ2k−1, σ2k+1) = (1, 1) and (1,−1), respectively. These yield two equa-
tions,

2 cosh 2K = e−c eK
′

2 = e−c e−K ′

.

From these we derive
c(K) = − ln 2 − 1

2 ln coshK

and
K ′(K) = 1

2 ln cosh 2K .

This last equation is a realization of the renormalization group. By thinning the degrees of
freedom, we derive an effective coupling K ′ valid at a new length scale. In our case, it is
easy to see that K ′ < K so the coupling gets weaker and weaker at longer length scales.
This is consistent with the fact that the one-dimensional Ising model is disordered at all
finite temperatures.

4



PHYSICS 140B : STATISTICAL PHYSICS

HW ASSIGNMENT #2 SOLUTIONS

(1) For each of the cluster diagrams in Fig. 1, find the symmetry factor sγ and write an
expression for the cluster integral bγ .

(a) (b) (c) (d)

Figure 1: Cluster diagrams for problem 1.

Solution : Choose labels as in Fig. 2, and set xnγ
≡ 0 to cancel out the volume factor in the

definition of bγ .

(a) (b) (c) (d)

1

2

3

4 5

1

2

3

4 5

1

2

3

4

5

6

1

2

3

4

5

6

Figure 2: Labeled cluster diagrams.

(a) The symmetry factor is sγ = 2, so

bγ = 1
2

∫

ddx1

∫

ddx2

∫

ddx3

∫

ddx4 f(r12) f(r13) f(r24) f(r34) f(r4) .

(b) Sites 1, 2, and 3 may be permuted in any way, so the symmetry factor is sγ = 6. We
then have

bγ = 1
6

∫

ddx1

∫

ddx2

∫

ddx3

∫

ddx4 f(r12) f(r13) f(r24) f(r34) f(r14) f(r23) f(r4) .

(c) The diagram is symmetric under reflections in two axes, hence sγ = 4. We then have

bγ = 1
4

∫

ddx1

∫

ddx2

∫

ddx3

∫

ddx4

∫

ddx5 f(r12) f(r13) f(r24) f(r34) f(r35) f(r4) f(r5) .

(d) The diagram is symmetric with respect to the permutations (12), (34), (56), and (15)(26).
Thus, sγ = 24 = 16. We then have

bγ = 1
16

∫

ddx1

∫

ddx2

∫

ddx3

∫

ddx4

∫

ddx5 f(r12) f(r13) f(r14) f(r23) f(r24) f(r34) f(r35) f(r45) f(r3) f(r4) f(r5) .

1



(2) Compute the partition function for the one-dimensional Tonks gas of hard rods of
length a on a ring of circumference L. This is slightly tricky, so here are some hints. Once
again, assume a particular ordering so that x1 < x2 < · · · < xN . Due to translational
invariance, we can define the positions of particles {2, . . . , N} relative to that of particle 1,
which we initially place at x1 = 0. Then periodicity means that xN ≤ L− a, and in general
one then has

xj−1 + a ≤ xj ≤ L − (N − j + 1)a .

Now integrate over {x2, . . . , xN} subject to these constraints. Finally, one does the x1 inte-
gral, which is over the entire ring, but which must be corrected to eliminate overcounting
from cyclic permutations. How many cyclic permutations are there?

Solution :

There are N cyclic permutations, hence

Z(T,L,N) = λ−N
T

L

N

Y
2

∫

a

dx2

Y
3

∫

x
2
+a

dx3 · · ·
YN
∫

x
N−1

+a

dxN =
L(L − Na)N−1λ−N

T

N !
.

(3) Consider a three-dimensional gas of point particles interacting according to the poten-
tial

u(r) =











+∆0 if r ≤ a

−∆1 if a < r ≤ b

0 if b < r ,

where ∆0,1 are both positive. Compute the second virial coefficient B2(T ) and find a rela-
tion which determines the inversion temperature in a throttling process.

Solution :

The Mayer function is

f(r) =











e−∆
0
/k

B
T − 1 if r ≤ 0

e∆
1
/k

B
T − 1 if a < r ≤ b

0 if b < r .

The second virial coefficient is

B2(T ) = −1
2

∫

d3r f(r)

=
2πa3

3
·
[

(

1 − e−∆
0
/k

B
T
)

+ (s3 − 1)
(

1 − e∆
1
/k

B
T
)

]

,

2



where s = b/a. The inversion temperature is a solution of the equation B2(T ) = TB′

2(T ),
which gives

s3 − 1 =
1 +

(

∆
0

k
B

T − 1
)

e−∆
0
/k

B
T

1 +
(

∆
1

k
B

T + 1
)

e∆
1
/k

B
T

.

3



PHYSICS 140B : STATISTICAL PHYSICS

HW ASSIGNMENT #3 SOLUTIONS

(1) How would you define the pair distribution function gab(r) for a molecular liquid? You
might wish to define xa

Ii as the position of the ith atom of species a in molecule I and then
define an appropriate thermodynamic average, assuming all the molecules are identical.
With this in mind, Interpret physically the pair distribution functions for liquid water from
Fig. 6.13 of the lecture notes. The density na is the number density of species a.

Figure 1: Left: Monte Carlo results for pair distribution functions of liquid water. From A.
K. Soper, Chem. Phys. 202, 295 (1996). Right: geometry of the water molecule.

Solution:

The figure is reproduced above in Fig, 1. The generalized pair distribution function for
molecular systems is defined as

gab(r, r′) =
1

nanb

〈

M
∑

I 6=J

νa
∑

i=1

ν
b

∑

j=1

δ
(

r − xa
Ii

)

δ
(

r′ − xb
Jj

)

〉

,

where xa
Ii is the position of the ith atom of species a in molecule I . Here νa is the number

of atoms of species a in each molecule. We assume all the molecules are equivalent.

With this in mind, we turn to Fig. 1. Let’s first consider g
OH

. There are two clear peaks in
the distribution located at r1 ≈ 1.8 Åand r2 ≈ 3.3 Å. According to Fig. 2, the O-H separation
within a single molecule is a ≈ 0.96 Å, so the peak at r1 is not due to intramolecular
correlation (i.e. on the same molecule). Indeed, intramolecular correlations are excluded
in the above definition of gab. The peak at r1 is due to the correlation of a given oxygen
atom with a hydrogen atom on the closest other water molecule. That this peak occurs at a
smaller separation than the first peaks in g

HH
and g

OO
makes sense from the point of view

of electrostatics: O is negatively charged and H is positively charged. What about the peak

1



Figure 2: Two views of the local structure in liquid water. Left: molecular dynamics
simulations (Univ. Oulu NMR group). Right: Quantum Monte Carlo simulations by D.
Ceperley and J. Gergely (see http://www.nccs.gov/2009/06/01/supercomputing-tests-
the-waters). Note the periodic boundary conditions.

at r2? For a crude estimate, draw a triangle with side lengths r1 + a and a and an angle
φ = 105.45◦ between them. The remaining side length c is then computed from the law
of cosines. For r1 = 1.8 Å and a = 0.96 Å, one finds c = 3.2A, which is very close to the
observed value of r2. Thus, the second peak in g

OH
is probably due to the second hydrogen

atom on the closest other water molecule.

Next, consider g
HH

. The first two peaks occur at r3 ≈ 2.4 Å and r4 ≈ 3.9 Å. The difference
of 1.5 Å is very close to the separation between two hydrogen atoms within a given water
molecule: 2a sin(1

2φ) = 1.515 Å.

Finally, consider g
OO

. There is a pronounced peak at a separation r5 ≈ 2.8 Å. Relatively
speaking, there is less of a trough before the next peak, which itself is much smaller, than
observed in either of the g

OH
and g

HH
distributions. This is because in the latter cases the

presence of one hydrogen is strongly correlated with the presence of another on the same
molecule.

(2) Consider a liquid where the interaction potential is u(r) = ∆0 (a/r)k, where ∆0 and
a are energy and length scales, respectively. Assume that the pair distribution function is
given by g(r) ≈ e−u(r)/k

B
T . Compute the equation of state. For what values of k do your

expressions converge?

Solution:

2



According to the virial equation of state in eqn. 6.157 of the Lecture Notes,

p = nk
B
T − 2

3πn2

∞
∫

0

dr r3 g(r)u′(r) .

Substituting for u(r) and g(r) as in the statement of the problem, we change variables to

s ≡ u(r)

k
B
T

⇒ ds =
u′(r)

k
B
T

dr ,

so

r = a

(

∆0

k
B
T

)1/k

s−1/k

and

r3 g(r)u′(r) dr = k
B
T a3

(

∆0

k
B
T

)3/k

s−3/k e−s ds .

We then have

p = nk
B
T + 2

3πn3a3k
B
T

(

∆0

k
B
T

)3/k
∞
∫

0

ds s−3/k e−s

= nk
B
T

{

1 + 2
3πΓ

(

1 − 3
k

)

na3

(

∆0

k
B
T

)3/k
}

.

Note that a minus sign appears because we must switch the upper and lower limits on the
s integral. This expression converges provided k < 0 or k > 3.

(3) Consider a charge Q impurity located at the origin of a two-dimensional metallic plane.
You may model the plane initially as a noninteracting Fermi gas in the presence of a neu-
tralizing background. The Poisson equation is

∇2φ = 4πe
[

n(ρ) − n0

]

δ(z) − 4πQδ(ρ) δ(z) ,

where r = (ρ, z) is decomposed into a two-dimensional vector ρ and the scalar z, and
where n0 is the number density of electrons at |ρ| = ∞.

(a) Using the Thomas-Fermi approach, find the two-dimensional electron number den-
sity n(ρ) in terms of the local potential φ(ρ, 0).

(b) By Fourier transformation, show that

φ̂(k, q) =
4πQ

k2 + q2
− 4πn0e

2

ε
F

χ̂(k)

k2 + q2
,

where k is a two-dimensional wavevector, and

χ̂(k) =

∞
∫

−∞

dq

2π
φ̂(k, q) .

3



(c) Solve for χ̂(k) and then for φ̂(k, q).

(d) Derive an expression for the potential φ(ρ, z).

(e) Derive an expression for the local charge density ̺(ρ) = en0 − en(ρ). Show that
̺(ρ) = Q

2πλ2 f(ρ/λ), where λ is a screening length and f(s) is some function, and
expression for which you should derive. Sketch f(s).

Solution:

(a) In two dimensions we have

n = 2

∫

d2k

(2π)2
Θ(k

F
− k) =

k2
F

2π
=

mε
F

π~2
,

where we have used ε
F

= ~
2k2

F
/2m. In the presence of a potential, the energy levels are

shifted and it is the electrochemical potential ε∞
F

= ε
F
− eφ which is constant throughout

the system. Thus, the local electron density is

n(ρ) =
m

π~2

[

ε∞
F

+ e φ(ρ, 0)
]

= n0 +
me

π~2
φ(ρ, 0) .

Here, φ(r) = φ(ρ, z) is the electrostatic potential in three-dimensional space. When we
restrict to the z = 0 plane we write φ(ρ, 0).

(b) We now have

∇2φ =
4

aB

φ(ρ, 0) δ(z) − 4πQδ(ρ) δ(z) ,

where a
B

= ~
2/me2 is the Bohr radius. Now we take the Fourier transform by multiplying

the above equation by eik·ρeiqz and then integrating over all ρ and z. This gives

−(k2 + q2)φ̂(k, q) =
4

a
B

χ̂(k)
︷ ︸︸ ︷

∞
∫

−∞

dq

2π
φ̂(k, q) −4πQ ,

hence

φ̂(k, q) =
4πQ

k2 + q2
− 4

a
B

χ̂(k)

k2 + q2
.

(c) To solve for χ̂(k) we integrate the above equation over q and use the fact that

∞
∫

−∞

dq

2π

eiqz

k2 + q2
=

e−|kz|

2 |k| .

Thus,

χ̂(k) =
2πQ

|k| − 2

|ka
B
|
χ̂(k)

4



Thus,

χ̂(k) =
2πQ

|k| + λ−1
,

where λ = 1
2a

B
. Plugging this back into our equation for φ̂(k, q), we obtain

φ̂(k, q) =
4πQ · |kλ|

(

k2 + q2
)(

1 + |kλ|
) .

(d) Now we Fourier transform back to real space:

φ(ρ, z) =

∫

d2k

(2π)2

∞
∫

−∞

dq

2π
φ̂(k, q) eik·ρ eiqz

=

∫

d2k

(2π)2
e−|kz|

2 |k| · 4πQ |kλ|
1 + |kλ| · eik·ρ

=
Q

λ
F

(

ρ/λ, |z|/λ
)

,

where

F (σ, ζ) =

∞
∫

0

du
u

1 + u
J0(σu) e−ζu ,

where J0(s) is the Bessel function of order zero.

(e) We have

̺(ρ) = e
[

n0 − n(ρ)
]

= − Q

2πλ2
F (ρ/λ, 0) .

Note

F (ρ/λ, 0) =

∞
∫

0

du
uJ0(uρ/λ)

1 + u
=

λ

ρ
−

∞
∫

0

du
J0(uρ/λ)

1 + u

=
λ

ρ
+ 1

2π Y0(ρ/λ) − 1
2π H0(ρ/λ) ,

where Y0(s) is a Bessel function of the second kind and H0(s) is the Struve function.
Asymptotically1 we obtain

̺(ρ) =
Q

2πλ2

{

p−1
∑

n=1

(−1)n Γ2
(

1
2 + n

)

(

2λ

ρ

)(2n+1)

+ O
(

2λ/ρ)2p+1

}

.

Note that ̺(ρ) ∝ ρ−3 at large distances. In the above formula, p is arbitrary. Since Γ(z+ 1
2 ) ∼

z ln z−z, the optimal value of p to minimize the remainder in the sum is p ≈ ρ/2λ. See Fig.
3 for a sketch.

1See Gradshteyn and Ryzhik §8.554, then use Γ(z) Γ(1 − z) = π csc(πz).
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Figure 3: Plot of the screening charge density in units of −Q/2πλ2 for problem (3).
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PHYSICS 140B : STATISTICAL PHYSICS

HW ASSIGNMENT #4 SOLUTIONS

(1) The Dieterici equation of state is

p (v − b) = RT exp

(

− a

vRT

)

.

(a) Find the critical point (pc, vc, Tc) for this equation of state

(b) Writing p̄ = p/pc, v̄ = v/vc, and T̄ = T/Tc, rewrite the equation of state in the form
p̄ = p̄

(

v̄, T̄
)

.

(c) For the brave only! Writing p̄ = 1 + π, T̄ = 1 + t, and v̄ = 1 + ǫ, find ǫliq(t) and ǫgas(t)
for 0 < (−t) ≪ 1, working to lowest nontrivial order in (−t).

Solution :

(a) We have

p =
RT

v − b
e−a/vRT ,

hence
(

∂p

∂v

)

T

= p ·
{

− 1

v − b
+

a

v2RT

}

.

Setting the LHS of the above equation to zero, we then have

v2

v − b
=

a

RT
⇒ f(u) ≡ u2

u − 1
=

a

bRT
,

where u = v/b is dimensionless. Setting f ′(u∗) = 0 yields u∗ = 2, hence f(u) on the
interval u ∈ (1,∞) has a unique global minimum at u = 2, where f(2) = 4. Thus,

vc = 2b , Tc =
a

4bR
, pc =

a

4b2
e−2 .

(b) In terms of the dimensionless variables p̄, v̄, and T̄ , the equation of state takes the form

p̄ =
T̄

2v̄ − 1
exp

(

2 − 2

v̄T̄

)

.

When written in terms of the dimensionless deviations π, ǫ, and t, this becomes

π =

(

1 + t

1 + 2ǫ

)

exp

(

2(ǫ + t + ǫt)

1 + ǫ + t + ǫt

)

− 1 .

Expanding via Taylor’s theorem, one finds

π(ǫ, t) = 3t − 2tǫ + 2t2 − 2
3ǫ3 + 2ǫ2t − 4ǫt2 − 2

3t3 + . . . .

1



Thus,

πǫt ≡
∂2π

∂ǫ ∂t
= −2 , πǫǫǫ ≡

∂3π

∂ǫ3
= −4 ,

and according to the results in §7.2.2 of the Lecture Notes, we have

ǫL,G = ∓
(

6πǫt

πǫǫǫ

)1/2

= ∓
(

− 3t
)1/2

.

(2) Consider a ferromagnetic spin-1 triangular lattice Ising model . The Hamiltonian is

Ĥ = −J
∑

〈ij〉

Sz
i Sz

j − H
∑

i

Sz
i ,

where Sz
i ∈ {−1 , 0 , +1} on each site i, H is a uniform magnetic field, and where the first

sum is over all links of the lattice.

(a) Derive the mean field Hamiltonian Ĥ
MF

for this model.

(b) Derive the free energy per site F/N within the mean field approach.

(c) Derive the self consistent equation for the local moment m = 〈Sz
i 〉.

(d) Find the critical temperature Tc(H = 0).

(e) Assuming |H| ≪ k
B
|T − Tc| ≪ J , expand the dimensionless free energy f = F/6NJ

in terms of θ = T/Tc , h = H/k
B
Tc, and m. Minimizing with respect to m, find

an expression for the dimensionless magnetic susceptibility χ = ∂m/∂h close to the
critical point.

Solution :

(a) Writing Sz
i = m + δSz

i , where m = 〈Sz
i 〉 and expanding Ĥ to linear order in the fluctu-

ations δSz
i , we find

Ĥ
MF

= 1
2NzJm2 − (H + zJm)

∑

i

Sz
i ,

where z = 6 for the triangular lattice.

(b) The free energy per site is

F/N = 1
2zJm2 − k

B
T ln Tr e(H+zJm)Sz

= 1
2zJm2 − k

B
T ln

{

1 + 2 cosh

(

H + zJm

k
B
T

)

}

.
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(c) The mean field equation is ∂F/∂m = 0, which is equivalent to m = 〈Sz
i 〉. We obtain

m =
2 sinh

(

H+zJm
k
B

T

)

1 + 2 cosh
(

H+zJm
k
B

T

) .

(d) To find Tc, we set H = 0 in the mean field equation:

m =
2 sinh(βzJm)

1 + 2 cosh(βzJm)

= 2
3βzJm + O(m3) .

The critical temperature is obtained by setting the slope on the RHS of the above equation
to unity. Thus,

Tc =
2zJ

3k
B

.

So for the triangular lattice, where z = 6, one has Tc = 4J/k
B

.

(e) Scaling T and H as indicated, the mean field equation becomes

m =
2 sinh

(

(m + h)/θ
)

1 + 2 cosh
(

(m + h)/θ
) =

m + h

θ/θc

+ . . . ,

where θc = 2
3 , and where we assume θ > θc. Solving for m(h), we have

m =
h

1 − θ
c

θ

=
θc h

θ − θc

+ O
(

(θ − θc)
2
)

.

Thus, χ = θc/(θ − θc), which reflects the usual mean field susceptibility exponent γ = 1.

(3) Consider the antiferromagnetic quantum Heisenberg model on a bipartite lattice:

H = J
∑

〈ij〉

Si · Sj

where J > 0 and the sum is over the links of the lattice.

(a) Break up the lattice into a dimer covering (a dimer is a pair of nearest neighbor sites)1.
Denote one sublattice as A and the other as B. You are to develop a mean field theory
of interacting dimers in the presence of a self-consistent staggered field

〈S
A
〉 = −〈S

B
〉 ≡ mẑ .

1There are exponentially many such dimer coverings, i.e. the number grows as eαN where N is the number
of lattice sites. Think about tiling a chessboard with with dominoes. The mathematical analysis of this problem
was performed by H. N. V. Temperley and M. E. Fisher, Phil. Mag. 6, 1061 (1961).
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The mean field Hamiltonian then breaks up into a sum over dimer Hamiltonians

Hdimer = JS
A
· S

B
+ (z − 1)J 〈S

B
〉 · S

A
+ (z − 1)J 〈S

A
〉 · S

B

= JS
A
· S

B
− Hs (Sz

A
− Sz

B
)

where the effective staggered field is Hs = (z−1)Jm, and z is the lattice coordination
number. Find the eigenvalues of the dimer Hamiltonian when S = 1

2 .

(b) Define x = 2h/J . What is the self-consistent equation for x when T = 0? Under what
conditions is there a nontrivial solution? What then is the self-consistent staggered
magnetization?

Hint: Write your mean field Hamiltonian as a 4×4 matrix using the basis states |↑↑ 〉, |↑↓ 〉,
|↓↑ 〉, and |↓↓ 〉. It should be block diagonal in such a way which allows an easy calculation
of the eigenvalues.

Solution :

(a) The mean field Hamiltonian,

H = J S
A
· S

B
− Hs (Sz

A
− Sz

B
) ,

is written in matrix form (for S = 1
2 ) as

H =

∣

∣

↑↑

〉
∣

∣

↑↓

〉
∣

∣

↓↑

〉
∣

∣

↓↓

〉

︷ ︸︸ ︷









1
4 J 0 0 0
0 −1

4 J − Hs

1
2 J 0

0 1
2 J 1

4 J + Hs 0
0 0 0 1

4 J









.

Clearly the states
∣

∣↑↑
〉

and
∣

∣↓↓
〉

are eigenstates of H with eigenvalues 1
4 J . The other two

eigenvalues are easily found to be

λ
±

= −1
4 J ±

√

H2
s + 1

4 J2 ,

(b) The ground state eigenvector is then

∣

∣ Ψ0

〉

= α
∣

∣↑↓
〉

+ β
∣

∣↓↑
〉

,

with
β

α
= x −

√

1 + x2 ,

with x = 2Hs/J . The staggered moment is then

m =
〈

Sz
A

〉

=
1

2

|α|2 − |β|2
|α|2 + |β|2 =

x

2
√

1 + x2
.
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Since m = 1
2x/(z − 1), we have

√
1 + x2 = (z − 1), or

m =

√

z(z − 2)

2(z − 1)

for the staggered magnetization. For z = 4 (square lattice) we find m =
√

2
3 ≃ 0.471, which

is 94% of the full moment S = 1
2 . Spin wave theory gives m ≃ S − 0.19 ≃ 0.31, which is

only 62% of the full moment for S = 1
2 .

Equivalently, we can compute the total energy per dipole,

E = (z − 1)Jm2 + λ
−

where the first term is the mean field energy of the (z−1) links per site treated in the mean
field approximation. Minimizing with respect to m,

∂E
∂m

= 2(z − 1)Jm − (z − 1)2J2 m
√

(z − 1)2J2 m2 + 1
4J2

. (1)

Solving for m, we recover the result m =
√

z(z − 2)
/

2(z − 1).
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PHYSICS 140B : STATISTICAL PHYSICS

HW ASSIGNMENT #5 SOLUTIONS

(1) Consider the S = 1 Ising Hamiltonian

Ĥ = −J
∑

〈ij〉

Sz
i Sz

j − H
∑

i

Sz
i + ∆

∑

i

(

Sz
i

)2
,

where Sz
i ∈ {−1, 0,+1}.

(a) Making the mean field approximation in the first term, but treating the other terms
exactly, find the corresponding mean field Hamiltonian Ĥ

MF
.

(b) Defining θ = k
B
T/zJ , h = H/zJ , and δ = ∆/zJ , find the free energy f = F/NzJ as

a function of θ, δ, h, and m.

(c) Write the mean field equation for this model.

Solution :

(a) The mean field Hamiltonian is

Ĥ
MF

= 1
2NzJm2 − (H + zJm)

∑

i

Sz
i + ∆

∑

i

(

Sz
i

)2
.

The mean field free energy is then

F
MF

= 1
2NzJm2 − Nk

B
T ln

[

1 + 2 e−∆/k
B

T cosh

(

H + zJm

k
B
T

)

]

.

(b) The scaled free energy is

f = 1
2m2 − θ ln

[

1 + 2 e−δ/θ cosh

(

m + h

θ

)

]

.

(c) The mean field equation is

∂f

∂m
= m − sinh

(

m+h
θ

)

1
2 exp(δ/θ) + cosh

(

m+h
θ

) = 0 .

(2) Consider a spin-S Ising model. The Hamiltonian is Ĥ = −J
∑

〈ij〉 S
z
i Sz

j , where the
individual spin polarizations take values Sz

i ∈ {−S, . . . ,+S}. Find an expression for the
mean field value of Tc. Hint: Expand the free energy for small m = 〈Sz

i 〉, and find what
value of T makes the coefficient of the quadratic term vanish.

1



Solution :

The mean field Hamiltonian is Ĥ
MF

= −zJm
∑

i Sz
i , hence the mean field free energy is

F
MF

= 1
2NzJm2 − Nk

B
T ln

S
∑

j=−S

ejzJm/k
B

T .

Note that

S
∑

j=−S

eju = eSu
2S
∑

j=0

e−ju = eSu

(

1 − e−(2S+1)u

1 − e−u

)

=
sinh

(

(S + 1
2)u

)

sinh(1
2u)

.

Thus,
f = 1

2m2 − θ ln sinh
(

(2S + 1)m/2θ
)

+ θ ln sinh(m/2θ) .

The mean field equation is

∂f

∂m
= m − (S + 1

2 ) ctnh
[

(S + 1
2)m/θ

]

+ 1
2 ctnh (m/2θ) .

Now use the Laurent expansion for ctnh (u) = 1
u + u

3 − u3

45 + . . . to obtain

m = 1
3S(S + 1)

m

θ
+ O(m3) ,

from which we identify θc = 1
3S(S + 1), or T MF

c = S(S + 1)zJ/3k
B

.

(3) Consider the O(2) model,

Ĥ = −1
2

∑

i,j

Jij n̂i ·n̂j − H ·
∑

i

n̂i ,

where n̂i = cos φi x̂ + sinφi ŷ. Consider the case of infinite range interactions, where
Jij = J/N for all i, j, where N is the total number of sites.

(a) Show that

exp

[

βJ

2N

∑

i,j

n̂i ·n̂j

]

=
NβJ

2π

∫

d2m e−NβJm2/2 eβJm·

P

i n̂i .

(b) Using the definition of the modified Bessel function I0(z),

I0(z) =

2π
∫

0

dφ

2π
ez cos φ ,

show that

Z = Tr e−βĤ =

∫

d2m e−NA(m,h)/θ ,

where θ = k
B
T/J and h = H/J . Find an expression for A(m,h).
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(c) Find the equation which extremizes A(m,h) as a function of m.

(d) Look up the properties of I0(z) and write down the first few terms in the Taylor
expansion of A(m,h) for small m and h. Solve for θc.

Solution :

(a) We have
Ĥ

k
B
T

= − J

2Nk
B
T

(

∑

i

n̂i

)2

− H

k
B
T

·
∑

i

n̂i .

Therefore

e−Ĥ/k
B

T = exp

[

1

2Nθ

(

∑

i

n̂i

)2

+
h

θ
·
∑

i

n̂i

]

=
N

2πθ

∫

d2m exp

[

−Nm2

2θ
+

(

m + h

θ

)

·
∑

i

n̂i

]

.

(b) Integrating the previous expression, we have

Z = Tr e−Ĥ/k
B

T =
∏

i

∫

dn̂i

2π
e−Ĥ [{n̂i}]/k

B
T

=
N

2πθ

∫

d2m e−Nm2/2θ
[

I0

(

|m + h|/θ
)

]N
.

Thus, we identify

A(m,h) = 1
2m2 − θ ln I0

(

|m + h|/θ
)

− θ

N
ln(N/2πθ) .

(c) Extremizing with respect to the vector m, we have

∂A

∂m
= m − m + h

|m + h| ·
I1

(

|m + h|/θ
)

I0

(

|m + h|/θ
) = 0 ,

where I1(z) = I ′0(z). Clearly any solution requires that m and h be colinear, hence

m =
I1

(

(m + h)/θ
)

I0

(

(m + h)/θ
) .

(d) To find θc, we first set h = 0. We then must solve

m =
I1(m/θ)

I0(m/θ)
.

3



The modified Bessel function Iν(z) has the expansion

Iν(z) =
(

1
2z

)ν
∞
∑

k=0

(

1
4z2

)k

k! Γ(k + ν + 1)
.

Thus,

I0(z) = 1 + 1
4z2 + . . .

I1(z) = 1
2z + 1

16z3 + . . . ,

and therefore I1(z)/I0(z) = 1
2z − 1

16z3 + O(z5), and we read off θc = 1
2 .

4



PHYSICS 140B : STATISTICAL PHYSICS

HW ASSIGNMENT #6 SOLUTIONS

(1) Consider a q-state Potts model on the body-centered cubic (BCC) lattice. The Hamilto-
nian is given by

Ĥ = −J
∑

〈ij〉

δσi , σj
,

where σi ∈ {1, . . . , q} on each site.

(a) Following the mean field treatment in §7.5.3 of the Lecture Notes, write x =
〈

δσi , 1

〉

=

q−1 + s, and expand the free energy in powers of s up through terms of order s4.
Neglecting all higher order terms in the free energy, find the critical temperature θc,
where θ = k

B
T/zJ as usual. Indicate whether the transition is first order or second

order (this will depend on q).

(b) For second order transitions, the truncated Landau expansion is sufficient, since we
care only about the sign of the quadratic term in the free energy. First order tran-
sitions involve a discontinuity in the order parameter, so any truncation of the free
energy as a power series in the order parameter involves an approximation. Find a
way to numerically determine θc(q) based on the full mean field (i.e. variational den-
sity matrix) free energy. Compare your results with what you found in part (a), and
sketch both sets of results for several values of q.

Solution :

(a) The expansion of the free energy f(s, θ) is given in eqn. 7.129 of the notes (set h = 0).
We have

f = f0 + 1
2a s2 − 1

3y s3 + 1
4b s4 +O(s5) ,

with

a =
q(qθ − 1)

q − 1
, y =

(q − 2) q3θ

2(q − 1)2
, b = 1

3q3θ
[

1 + (q − 1)−3
]

.

For q = 2 we have y = 0, and there is a second order phase transition when a = 0, i.e.
θ = q−1. For q > 2, there is a cubic term in the Landau expansion, and this portends a first
order transition. Restricting to the quartic free energy above, a first order at a > 0 transition
preempts what would have been a second order transition at a = 0. The transition occurs
for y2 = 9

2ab. Solving for θ, we obtain

θL

c =
6(q2 − 3q + 3)

(5q2 − 14q + 14) q
.

The value of the order parameter s just below the first order transition temperature is

s(θ−c ) =
√

2a/b ,

1



Figure 1: Variational free energy of the q = 7 Potts model versus variational parameter
x. Left: free energy f(x, θ). Right: derivative f ′(x, θ) with respect to the x. The dot-dash
magenta curve in both cases is the locus of points for which the second derivative f ′′(x, θ)
with respect to x vanishes. Three characteristic temperatures are marked θ = q−1 (blue),
where the coefficient of the quadratic term in the Landau expansion changes sign; θ = θ0

(red), where there is a saddle-node bifurcation and above which the free energy has only
one minimum at x = q−1 (symmetric phase); and θ = θc (green), where the first order
transition occurs.

where a and b are evaluated at θ = θc

(b) The full variational free energy, neglecting constants, is

f(x, θ) = −1
2x2 − (1− x)2

2(q − 1)
+ θ x ln x + θ (1− x) ln

(

1− x

q − 1

)

.

Therefore

∂f

∂x
= −x +

1− x

q − 1
+ θ lnx− θ ln

(

1− x

q − 1

)

∂2f

∂x2
= − q

q − 1
+

θ

x(1− x)
.
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Figure 2: Comparisons of order parameter jump at θc (top) and critical temperature θc

(bottom) for untruncated (solid lines) and truncated (dashed lines) expansions of the mean
field free energy. Note the agreement as q → 2, where the jump is small and a truncated
expansion is then valid.

Solving for ∂2f
∂x2 = 0, we obtain

x
±

= 1
2 ± 1

2

√

1− θ

θ0

,

where θ0 = q/4(q − 1). For temperatures below θ0, the function f(x, θ) has three extrema:
two local minima and one local maximum. The points x

±
lie between either minimum and

the maximum. The situation is depicted in fig. 1 for the case q = 7. To locate the first order
transition, we must find the temperature θc for which the two minima are degenerate. This
can be done numerically, but there is an analytic solution:

θMF

c =
q − 2

2(q − 1) ln(q − 1)
, s(θ−c ) =

q − 2

q
.

A comparison of these results with those from part (a) is shown in fig. 2.

(2) Find vc, Tc, and pc for the equation of state,

p =
RT

v − b
− α

v3
.

3



Solution :

We find p′(v):
∂p

∂v
= − RT

(v − b)2
+

3α

v4
.

Setting this to zero yields the equation

f(u) ≡ u4

(u− 1)2
=

3α

RTb2
,

where u ≡ v/b is dimensionless. The function f(u) on the interval [1,∞] has a minimum
at u = 2, where fmin = f(2) = 16. This determines the critical temperature, by setting the
RHS of the above equation to fmin. Then evaluate pc = p(vc, Tc). One finds

vc = 2b , Tc =
3α

16Rb2
, pc =

α

16b3
.

(3) Consider the O(3) model,

Ĥ = −J
∑

〈ij〉

n̂i · n̂j −H ·
∑

i

n̂i ,

where each n̂i is a three-dimensional unit vector.

(a) Writing
n̂i = m + δn̂i ,

with m = 〈n̂i〉 and δn̂i = n̂i −m, derive the mean field Hamiltonian.

(b) Compute the mean field free energy f(m, θ,h), where θ = k
B
T/zJ and h = H/zJ ,

with f = F/NzJ . Here z is the lattice coordination number and N the total number
of lattice sites, as usual. You may assume that m ‖ h. Note that the trace over the
local degree of freedom at each site i is given by

Tr
i
←→

∫

dn̂i

4π
,

where the integral is over all solid angle.

(c) Find the critical point (θc, hc).

(d) Find the behavior of the magnetic susceptibility χ = ∂m/∂h as a function of temper-
ature θ just above θc.

Solution :
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(a) Making the mean field Ansatz, one obtains the effective field Heff = H + zJm, and the
mean field Hamiltonian

Ĥ
MF

= 1
2NzJm2 − (H + zJm) ·

∑

i

n̂i .

(b) We assume that m ‖ h, in which case

f(m, θ, h) = 1
2m2 − θ

∫

dn̂

4π
e(m+h)ẑ·n̂/θ

= 1
2m2 − θ ln

(

sinh
(

(m + h)/θ
)

(m + h)/θ

)

.

Here we have without loss of generality taken h to lie in the ẑ direction.

(c) We expand f(m, θ, h) for small m and θ, obtaining

f(m, θ, h) = 1
2m2 − (m + h)2

3 θ
+

(m + h)4

180 θ3
+ . . .

= 1
2

(

1− 2

3θ

)

m2 − 2hm

3 θ
+

m4

180 θ4
+ . . .

We now read off hc = 0 and θc = 2
3 .

(d) Setting ∂f/∂m = 0, we obtain

(

1− θc

θ

)

m =
θc

θ
hm +O(m3) .

We therefore have

m(h, θ > θc) =
θc h

θ − θc

+O(h3) , χ(θ > θc) =
∂m

∂h

∣

∣

∣

∣

h=0

=
θc

θ − θc

.
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PHYSICS 140B : STATISTICAL PHYSICS

HW ASSIGNMENT #7 SOLUTIONS

(1) The Hamiltonian for the three state (Z3) clock model is written

Ĥ = −J
∑

〈ij〉

n̂i · n̂j ,

where each local unit vector n̂i can take one of three possible values:

n̂ = x̂ , n̂ = −1
2 x̂ +

√

3
2 ŷ , n̂ = −1

2 x̂ −
√

3
2 ŷ .

(a) Consider the Z3 clock model on a lattice of coordination number z. Make the mean
field assumption 〈n̂i〉 = mx̂. Expanding the Hamiltonian to linear order in the fluc-
tuations, derive the mean field Hamiltonian for this model Ĥ

MF
.

(b) Rescaling θ = k
B
T/zJ and f = F/NzJ , where N is the number of sites, find f(m, θ).

(c) Find the mean field equation.

(d) Is the transition second order or first order?

(e) Show that this model is equivalent to the three state Potts model. Is the Z4 clock
model equivalent to the four state Potts model? Why or why not?

Solution :

(a) The mean field Hamiltonian is

Ĥ
MF

= 1
2NzJm

2 − zJm x̂ ·
∑

i

n̂i .

(b) We have

f(m, θ) = 1
2m

2 − θ ln Tr
n̂
emx̂·n̂/θ

= 1
2m

2 − θ ln
(

1
3e

m/θ + 2
3e

−m/2θ
)

= 1
2

(

1 − 1

2 θ

)

m2 − m3

24 θ2
+

m4

64 θ3
+ O(m5) .

Here we have defined Trn̂ = 1
3

∑

n̂ as the normalized trace. The last line is somewhat
tedious to obtain, but is not necessary for this problem.

(c) The mean field equation is

0 =
∂f

∂m
= m− em/θ − e−m/2θ

em/θ + 2 e−m/2θ
.

1



εclock

σσ′ 0◦ 120◦ 240◦

0◦ −J 1
2J

1
2J

120◦ 1
2J −J 1

2J

240◦ 1
2J

1
2J −J

Table 1: Z3 clock model energy matrix.

εPotts

σσ′ A B C

A −J̃ 0 0

B 0 −J̃ 0

C 0 0 −J̃

Table 2: q = 3 Potts model energy matrix.

Expanding the RHS to lowest order in m and setting the slope to 1, we find θc = 1
2 .

(d) Since f(m, θ) 6= f(−m, θ), the Landau expansion of the free energy (other than con-
stants) should include terms of all orders starting with O(m2). This means that there will
in general be a cubic term, hence we expect a first order transition.

(e) Let ε(n̂, n̂′) = −Jn̂ · n̂′ be the energy for a given link. The unit vectors n̂ and n̂′ can
each point in any of three directions, which we can label as 0◦, 120◦, and 240◦. The matrix
of possible bond energies is shown in Tab. 1.

Now consider the q = 3 Potts model, where the local states are labeled |A 〉, |B 〉, and |C 〉.
The Hamiltonian is

Ĥ = −J̃
∑

〈ij〉

δσ
i
,σ

j
.

The interaction energy matrix for the Potts model is given in Tab. 2.

We can in each case label the three states by a local variable σ ∈ {1, 2, 3}, corresponding,
respectively, to 0◦, 120◦, and 240◦ for the clock model and to A, B, and C for the Potts
model. We then observe

εclock

σσ′ (J) = εPotts

σσ′ (3
2J) + 1

2J .

Thus, the free energies satisfy

F clock(J) = 1
4NzJ + F Potts(3

2J) ,

and the models are equivalent. However, the Zq clock model and q-state Potts model are
not equivalent for q > 3. Can you see why? Hint: construct the corresponding energy
matrices for q = 4.

(2) Consider the U(1) Ginsburg-Landau theory with

F =

∫

ddr
[

1
2a |Ψ|2 + 1

4b |Ψ|4 + 1
2κ |∇Ψ|2

]

.

2



Here Ψ(r) is a complex-valued field, and both b and κ are positive. This theory is appro-
priate for describing the transition to superfluidity. The order parameter is 〈Ψ(r)〉. Note
that the free energy is a functional of the two independent fields Ψ(r) and Ψ∗(r), where
Ψ∗ is the complex conjugate of Ψ. Alternatively, one can consider F a functional of the real
and imaginary parts of Ψ.

(a) Show that one can rescale the field Ψ and the coordinates r so that the free energy
can be written in the form

F = ε0

∫

ddx
[

± 1
2 |ψ|2 + 1

4 |ψ|4 + 1
2 |∇ψ|2

]

,

where ψ and x are dimensionless, ε0 has dimensions of energy, and where the sign
on the first term on the RHS is sgn(a). Find ε0 and the relations between Ψ and ψ and
between r and x.

(b) By extremizing the functional F [ψ,ψ∗] with respect to ψ∗, find a partial differential
equation describing the behavior of the order parameter field ψ(x).

(c) Consider a two-dimensional system (d = 2) and let a < 0 (i.e. T < Tc). Consider
the case where ψ(x) describe a vortex configuration: ψ(x) = f(r) eiφ, where (r, φ) are
two-dimensional polar coordinates. Find the ordinary differential equation for f(r)
which extremizes F .

(d) Show that the free energy, up to a constant, may be written as

F = 2πε0

R
∫

0

dr r

[

1
2

(

f ′
)2

+
f2

2r2
+ 1

4

(

1 − f2
)2

]

,

where R is the radius of the system, which we presume is confined to a disk. Con-
sider a trial solution for f(r) of the form

f(r) =
r√

r2 + a2
,

where a is the variational parameter. Compute F (a,R) in the limit R → ∞ and
extremize with respect to a to find the optimum value of a within this variational
class of functions.

Solution :

(a) Taking the ratio of the second and first terms in the free energy density, we learn that

Ψ has units of A ≡
(

|a|/b
)1/2

. Taking the ratio of the third to the first terms yields a length

scale ξ =
(

κ/|a|
)1/2

. We therefore write Ψ = Aψ and x̃ = ξx to obtain the desired form of
the free energy, with

ε0 = A2 ξd |a| = |a|2− 1

2
d b−1 κ

1

2
d .

3



(b) We extremize with respect to the field ψ∗. Writing F = ε0
∫

d3x F , with F = ±1
2 |ψ|2 +

1
4 |ψ|4 + 1

2 |∇ψ|2,

δ(F/ε0)

δψ∗(x)
=

∂F
∂ψ∗

− ∇· ∂F
∂∇ψ∗

= ±1
2 ψ + 1

2 |ψ|
2 ψ − 1

2 ∇
2ψ .

Thus, the desired PDE is
−∇2ψ ± ψ + |ψ|2 ψ = 0 ,

which is known as the time-independent nonlinear Schrödinger equation.

(c) In two dimensions,

∇
2 =

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
.

Plugging in ψ = f(r) eiφ into ∇2ψ + ψ − |ψ|2ψ = 0, we obtain

d2f

dr2
+

1

r

df

dr
− f

r2
+ f − f3 = 0 .

(d) Plugging ∇ψ = r̂ f ′(r) + i
r f(r) φ̂ into our expression for F , we have

F = 1
2 |∇ψ|2 − 1

2 |ψ|
2 + 1

4 |ψ|
4

= 1
2

(

f ′
)2

+
f2

2r2
+ 1

4

(

1 − f2
)2 − 1

4 ,

which, up to a constant, is the desired form of the free energy. It is a good exercise to show
that the Euler-Lagrange equations,

∂ (rF)

∂f
− d

dr

(

∂ (rF)

∂f ′

)

= 0

results in the same ODE we obtained for f in part (c). We now insert the trial form for f(r)
into F . The resulting integrals are elementary, and we obtain

F (a,R) = 1
4πε0

{

1 − a4

(R2 + a2)2
+ 2 ln

(

R2

a2
+ 1

)

+
R2 a2

R2 + a2

}

.

Taking the limit R→ ∞, we have

F (a,R → ∞) = 2 ln

(

R2

a2

)

+ a2 .

We now extremize with respect to a, which yields a =
√

2. Note that the energy in the
vortex state is logarithmically infinite. In order to have a finite total free energy (relative
to the ground state), we need to introduce an antivortex somewhere in the system. An

4



antivortex has a phase winding which is opposite to that of the vortex, i.e. ψ = f e−iφ. If
the vortex and antivortex separation is r, the energy is

V (r) = 1
2πε0 ln

(

r2

a2
+ 1

)

.

This tends to V (r) = πε0 ln(d/a) for d≫ a and smoothly approaches V (0) = 0, since when
r = 0 the vortex and antivortex annihilate leaving the ground state condensate. Recall
that two-dimensional point charges also interact via a logarithmic potential, according to
Maxwell’s equations. Indeed, there is a rather extensive analogy between the physics of
two-dimensional models with O(2) symmetry and (2 + 1)-dimensional electrodynamics.

5



PHYSICS 140B : STATISTICAL PHYSICS

HW ASSIGNMENT #8 SOLUTIONS

(1) Consider a monatomic ideal gas in the presence of a temperature gradient ∇T . Answer
the following questions within the framework of the relaxation time approximation to the
Boltzmann equation.

(a) Compute the particle current j and show that it vanishes.

(b) Compute the ‘energy squared’ current,

jε2 =

∫

d3p ε2v f(r,p, t) .

(c) Suppose the gas is diatomic, so cp = 7
2k

B
. Show explicitly that the particle current j

is zero. Hint: To do this, you will have to understand the derivation of eqn. 8.85 in
the Lecture Notes and how this changes when the gas is diatomic. You may assume
Qαβ = F = 0.

Solution :

(a) Under steady state conditions, the solution to the Boltzmann equation is f = f0 + δf ,
where f0 is the equilibrium distribution and

δf = − τf0

k
B
T

·
ε − cpT

T
v · ∇T .

For the monatomic ideal gas, cp = 5
2k

B
. The particle current is

jα =

∫

d3p vα δf

= − τ

k
B
T 2

∫

d3p f0(p) vα vβ
(

ε − 5
2k

B
T

) ∂T

∂xβ

= − 2nτ

3mk
B
T 2

∂T

∂xα

〈

ε
(

ε − 5
2k

B
T

)〉

,

where the average over momentum/velocity is converted into an average over the energy
distribution,

P̃ (ε) = 4πv2 dv

dε
P

M
(v) = 2

√

π
(k

B
T )−3/2 ε1/2 φ(ε) e−ε/k

B
T .

As discussed in the Lecture Notes, the average of a homogeneous function of ε under this
distribution is given by

〈

εα
〉

= 2
√

π
Γ
(

α + 3
2

)

(k
B
T )α .

Thus,
〈

ε
(

ε − 5
2k

B
T

)〉

= 2
√

π
(k

B
T )2

{

Γ
(

7
2

)

− 5
2 Γ

(

5
2

)

}

= 0 .

1



(b) Now we must compute

jα
ε2 =

∫

d3p vα ε2 δf

= − 2nτ

3mk
B
T 2

∂T

∂xα

〈

ε3
(

ε − 5
2k

B
T

)〉

.

We then have

〈

ε3
(

ε − 5
2k

B
T

)〉

= 2
√

π
(k

B
T )4

{

Γ
(

11
2

)

− 5
2 Γ

(

9
2

)

}

= 105
2 (k

B
T )4

and so

jε2 = −35nτk
B

m
(k

B
T )2 ∇T .

(c) For diatomic gases in the presence of a temperature gradient, the solution to the lin-
earized Boltzmann equation in the relaxation time approximation is

δf = −τ f0

k
B
T

·
ε(Γ ) − cpT

T
v · ∇T ,

where

ε(Γ ) = εtr + εrot = 1
2mv2 +

L
2
1 + L

2
2

2I
,

where L1,2 are components of the angular momentum about the instantaneous body-fixed
axes, with I ≡ I1 = I2 ≫ I3. We assume the rotations about axes 1 and 2 are effectively
classical, so equipartition gives 〈εrot〉 = 2 × 1

2k
B

= k
B

. We still have 〈εtr〉 = 3
2k

B
. Now in

the derivation of the factor ε(ε − cpT ) above, the first factor of ε came from the vαvβ term,

so this is translational kinetic energy. Therefore, with cp = 7
2k

B
now, we must compute

〈

εtr

(

εtr + εrot − 7
2k

B
T

)〉

=
〈

εtr

(

εtr − 5
2k

B
T

)〉

= 0 .

So again the particle current vanishes.

Note added :

It is interesting to note that there is no particle current flowing in response to a temperature
gradient when τ is energy-independent. This is a consequence of the fact that the pressure
gradient ∇p vanishes. Newton’s Second Law for the fluid says that nmV̇ + ∇p = 0, to
lowest relevant order. With ∇p 6= 0, the fluid will accelerate. In a pipe, for example, even-
tually a steady state is reached where the flow is determined by the fluid viscosity, which
is one of the terms we just dropped. (This is called Poiseuille flow.) When p is constant, the
local equilibrium distribution is

f0(r,p) =
p/k

B
T

(2πmk
B
T )3/2

e−p2/2mk
B

T ,

2



where T = T (r). We then have

f(r,p) = f0(r − vτ,p) ,

which says that no new collisions happen for a time τ after a given particle thermalizes.
I.e. we evolve the streaming terms for a time τ . Expanding, we have

f = f0 − τp

m
· ∂f0

∂r
+ . . .

=

{

1 − τ

2k
B
T 2

(

ε(p) − 5
2k

B
T

) p

m
·∇T + . . .

}

f0(r,p) ,

which leads to j = 0, assuming the relaxation time τ is energy-independent.

When the flow takes place in a restricted geometry, a dimensionless figure of merit known
as the Knudsen number, Kn = ℓ/L, where ℓ is the mean free path and L is the characteris-
tic linear dimension associated with the geometry. For Kn ≪ 1, our Boltzmann transport
calculations of quantities like κ, η, and ζ hold, and we may apply the Navier-Stokes equa-
tions1. In the opposite limit Kn ≫ 1, the boundary conditions on the distribution are
crucial. Consider, for example, the case ℓ = ∞. Suppose we have ideal gas flow in a cylin-
der whose symmetry axis is x̂. Particles with vx > 0 enter from the left, and particles with
vx < 0 enter from the right. Their respective velocity distributions are

Pj(v) = nj

(

m

2πk
B
Tj

)3/2

e−mv2/2k
B

Tj ,

where j = L or R. The average current is then

jx =

∫

d3v
{

n
L
vx P

L
(v)Θ(vx) + n

R
vx P

R
(v)Θ(−vx)

}

= n
L

√

2k
B
T

L

m
− n

R

√

2k
B
T

R

m
.

(2) Suppose the relaxation time is energy-dependent, with τ(ε) = τ0 e−ε/ε
0 . Compute the

particle current j and energy current jε flowing in response to a temperature gradient ∇T .

Solution :

Now we must compute

{

jα

jα
ε

}

=

∫

d3p

{

vα

ε vα

}

δf

= − 2n

3mk
B
T 2

∂T

∂xα

〈

τ(ε)
{ ε

ε2

}

(

ε − 5
2k

B
T

)〉

,

1These equations may need to be supplemented by certain conditions which apply in the vicinity of solid
boundaries.
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where τ(ε) = τ0 e−ε/ε
0 . We find

〈

e−ε/ε
0 εα

〉

= 2
√

π
(k

B
T )−3/2

∞
∫

0

dε εα+ 1

2 e−ε/kBT e−ε/ε
0

= 2
√

π
Γ
(

α + 3
2

)

(k
B
T )α

(

ε0

ε0 + k
B
T

)α+ 3

2

.

Therefore,

〈

e−ε/ε
0 ε

〉

= 3
2 k

B
T

(

ε0

ε0 + k
B
T

)5/2

〈

e−ε/ε
0 ε2

〉

= 15
4 (k

B
T )2

(

ε0

ε0 + k
B
T

)7/2

〈

e−ε/ε
0 ε3

〉

= 105
8 (k

B
T )3

(

ε0

ε0 + k
B
T

)9/2

and

j =
5nτ0k

2
B
T

2m

ε
5/2
0

(ε0 + k
B
T )7/2

∇T

jε = −5nτ0k
2
B
T

4m

(

ε0

ε0 + k
B
T

)7/2(2ε0 − 5k
B
T

ε0 + k
B
T

)

∇T .

The previous results are obtained by setting ε0 = ∞ and τ0 = 1/
√

2 nv̄σ. Note the strange
result that κ becomes negative for k

B
T > 2

5ε0.

(3) Use the linearized Boltzmann equation to compute the bulk viscosity ζ of an ideal gas.

(a) Consider first the case of a monatomic ideal gas. Show that ζ = 0 within this approx-
imation. Will your result change if the scattering time is energy-dependent?

(b) Compute ζ for a diatomic ideal gas.

Solution :

According to eqn. 8.111 in the Lecture Notes, the solution to the linearized Boltzmann
equation in the relaxation time approximation is

δf = − τf0

k
B
T

{

mvαvβ ∂Vα

∂xβ
−

(

εtr + εrot

) k
B

cV

∇·V
}

.

We also have
Tr Π = nm 〈v2〉 = 2n 〈εtr〉 = 3p − 3ζ ∇·V .

4



We then compute Tr Π:

Tr Π = 2n 〈εtr〉 = 3p − 3ζ ∇·V

= 2n

∫

dΓ (f0 + δf) εtr

The f0 term yields a contribution 3nk
B
T = 3p in all cases, which agrees with the first term

on the RHS of the equation for Tr Π. Therefore

ζ ∇·V = −2
3n

∫

dΓ δf εtr .

(a) For the monatomic gas, Γ = {px, py, pz}. We then have

ζ∇·V =
2nτ

3k
B
T

∫

d3p f0(p) ε

{

mvαvβ ∂Vα

∂xβ
− ε

cV /kB

∇·V
}

=
2nτ

3k
B
T

〈(

2
3 − k

B

c
V

)

ε
〉

∇·V = 0 .

Here we have replaced mvαvβ → 1
3mv2 = 2

3εtr under the integral. If the scattering time
is energy dependent, then we put τ(ε) inside the energy integral when computing the
average, but this does not affect the final result: ζ = 0.

(b) Now we must include the rotational kinetic energy in the expression for δf , and we
have cV = 5

2k
B

. Thus,

ζ∇·V =
2nτ

3k
B
T

∫

dΓ f0(Γ ) εtr

{

mvαvβ ∂Vα

∂xβ
−

(

εtr + εrot

) k
B

cV

∇·V
}

=
2nτ

3k
B
T

〈

2
3ε2

tr −
k
B

c
V

(

εtr + εrot

)

εtr

〉

∇·V ,

and therefore

ζ =
2nτ

3k
B
T

〈

4
15 ε2

tr − 2
5k

B
T εtr

〉

= 4
15nτk

B
T .
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PHYSICS 140B : STATISTICAL PHYSICS

WINTER 2012 MIDTERM EXAM SOLUTIONS

(1) Consider the Planck equation of state,

p = −RT

b
ln

(

1 − b

v

)

− a

v2
,

where a and b are constants, and R = NAk
B

is the gas constant.

(a) What are the dimensions of a and b?
Clearly [a] = E · V and [b] = V , where E and V stand for energy and volume,
respectively.

(b) Recall the virial expansion of the equation of state,

p = nk
B
T

(

1 + B2 n + B3 n2 + . . .
)

,

where n = NA/v is the number density. Find all the virial coefficients for the Planck
equation. You should treat Bj=2 differently from Bj>2. Recall also that for |ε| < 1,

ln(1 + ε) = ε − 1
2ε2 + 1

3ε3 − . . . =

∞
∑

k=1

(−1)k−1 εk

k
.

Expanding the log, we have

p =
RT

v
+

(

1
2bRT − a

)

v−2 +

∞
∑

k=3

bk−1RT

k
v−k

= nk
B
T

{

1 +
1

NA

(

b

2
− a

NAk
B
T

)

n +
∞

∑

k=3

1

k

(

bn

N
A

)k−1
}

,

using R = NAk
B

. From this we read off

B2 =
1

NA

(

b

2
− a

NAk
B
T

)

, Bk>2 =
1

k

(

b

N
A

)k−1

.

(c) Find the values vc, Tc, and pc at the critical point.
The critical point is one where p(v) has an inflection point. Differentiating, we have

∂p

∂v
= −RT

b
· b

v2
· 1

1 − b
v

+
2a

v3

= − RT

v(v − b)
+

2a

v3
.

1



Setting ∂p/∂v = 0, we have

f(u) =
u2

u − 1
=

2a

bRT
,

where u = v/b is dimensionless. On the interval u ∈ [1,∞], the function f(u) has a
unique minimum, and setting f ′(u) = 0 gives u = 2. The minimum value for f is
then f(2) = 4. Thus, vc = 2. Evaluating the above equation at the minimum of the
LHS determines Tc, and plugging in we get pc = p(vc, Tc). We find

vc = 2b , Tc =
2

2bR
, pc = (2 ln 2 − 1) · a

4b2
.

(2) The Hamiltonian for the four state (Z4) clock model is written

Ĥ = −J
∑

〈ij〉

n̂i · n̂j ,

where each local unit vector n̂i can take one of four possible values: n̂i ∈ {x̂, ŷ,−x̂,−ŷ}.

(a) Consider the Z4 clock model on a lattice of coordination number z. Make the mean
field assumption 〈n̂i〉 = mx̂. Expanding the Hamiltonian to linear order in the fluc-
tuations, derive the mean field Hamiltonian for this model Ĥ

MF
.

The mean field Hamiltonian is

Ĥ
MF

= 1
2NzJm2 − zJmx̂ ·

∑

i

n̂i .

(b) Rescaling θ = k
B
T/zJ and f = F/NzJ , where N is the number of sites, find f(m, θ).

We have

f(m, θ) = 1
2m2 − θ ln Tr

n̂
emx̂·n̂/θ

= 1
2m2 − θ ln

(

1
2 + 1

2 cosh(m/θ)
)

= 1
2

(

1 − 1

2θ

)

m2 +
m4

96 θ3
+ O(m5) .

Here we have defined Trn̂ = 1
4

∑

n̂ as the normalized trace.

(c) Find the mean field equation and the critical value θc.
The mean field equation is

0 =
∂f

∂m
= m − sinh(m/θ)

1 + cosh(m/θ)
.

Expanding the RHS to lowest order in m and setting the slope to 1, we find θc = 1
2 .

(d) Is the transition second order or first order?
There is no cubic term in the Landau expansion, and the coefficient of the quartic
term is positive. Second order.
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PHYSICS 140B : STATISTICAL PHYSICS

WINTER 2012 ALTERNATE MIDTERM EXAM SOLUTIONS

(1) Consider the equation of state,

p =
RT√

v2 − b2
− a

v2
.

(a) Find vc, Tc, and pc at the critical point.
Look for the inflection point in p as a function of v. Differentiating,

∂p

∂v
= − RTv

(v2 − b2)3/2
+

2a

v3
.

With u ≡ v/b dimensionless, we have

f(u) =
u4

(u2 − 1)3/2
=

2a

bRT
.

On the interval u ∈ [1,∞], the function f(u) has a unique minimum, since

f ′(u) =
u3(u2 − 4)

(u2 − 1)5/2
,

and hence f ′(u) = 0 has a unique solution u = 2, where f(2) = 16/3
√

3. Thus,

vc = 2b , Tc =
3
√

3

8

a

b
, pc =

a

8b2
.

(b) Writing p̄ = p/pc, v̄ = v/vc, and T̄ = T/Tc, write the dimensionless equation of state,
p̄ = p̄(v̄, T̄ ).
Scaling out vc, Tc, and pc, one finds

p̄ =
3
√

3 T̄√
4 v̄2 − 1

− 2

v̄2
.

Note that p̄(v̄ = 1, T̄ = 1) = 1.

(2) The Hamiltonian for the three state (Z3) clock model is written

Ĥ = −J
∑

〈ij〉

n̂i · n̂j ,

where each local unit vector n̂i can take one of three possible values:

n̂ = x̂ , n̂ = −1
2 x̂ +

√

3
2 ŷ , n̂ = −1

2 x̂ −
√

3
2 ŷ .

1



(a) Consider the Z3 clock model on a lattice of coordination number z. Make the mean
field assumption 〈n̂i〉 = mx̂. Expanding the Hamiltonian to linear order in the fluc-
tuations, derive the mean field Hamiltonian for this model Ĥ

MF
.

The mean field Hamiltonian is

Ĥ
MF

= 1
2NzJm2 − zJm x̂ ·

∑

i

n̂i .

(b) Rescaling θ = k
B
T/zJ and f = F/NzJ , where N is the number of sites, find f(m, θ).

We have

f(m, θ) = 1
2m2 − θ ln Tr

n̂
emx̂·n̂/θ

= 1
2m2 − θ ln

(

1
3em/θ + 2

3e−m/2θ
)

= 1
2

(

1 − 1

2 θ

)

m2 − m3

24 θ2
+

m4

64 θ3
+ O(m5) .

Here we have defined Trn̂ = 1
3

∑

n̂ as the normalized trace. The last line is somewhat
tedious to obtain, but is not necessary for this problem.

(c) Find the mean field equation.
The mean field equation is

0 =
∂f

∂m
= m − em/θ − e−m/2θ

em/θ + 2 e−m/2θ
.

Expanding the RHS to lowest order in m and setting the slope to 1, we find θc = 1
2 .

(d) Is the transition second order or first order?
Since f(m, θ) 6= f(−m, θ), the Landau expansion of the free energy (other than con-
stants) should include terms of all orders starting with O(m2). This means that there
will in general be a cubic term, hence we expect a first order transition.
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PHYSICS 140B : STATISTICAL PHYSICS

WINTER 2012 FINAL EXAM SOLUTIONS

(1) Consider an Ising model on a square lattice with Hamiltonian

Ĥ = −J
∑

i∈A

∑

j∈B

′

Si σj ,

where the sum is over all nearest-neighbor pairs, such that i is on the A sublattice and j is
on the B sublattice (this is the meaning of the prime on the j sum), as depicted in Fig. 1.
The A sublattice spins take values Si ∈ {−1, 0,+1}, while the B sublattice spins take values
σj ∈ {−1,+1}.

(a) Make the mean field assumptions 〈Si〉 = m
A

for i ∈ A and 〈σj〉 = m
B

for j ∈ B. Find
the mean field free energy F (T,N,m

A
,m

B
). Adimensionalize as usual, writing θ ≡

k
B
T/zJ (with z = 4 for the square lattice) and f = F/zJN . Then write f(θ,m

A
,m

B
).

[10 points]

Writing Si = m
A

+ δSi and σj = m
B

+ δσj and dropping the terms proportional to
δSi δσj , which are quadratic in fluctuations, one obtains the mean field Hamiltonian

Ĥ
MF

= 1
2NzJm

A
m

B
− zJm

B

∑

i∈A

Si − zJm
A

∑

j∈B

σj ,

with z = 4 for the square lattice. Thus, the internal field on each A site is Hint,A =
zJm

B
, and the internal field on each B site is Hint,B = zJm

A
. The mean field free

energy, F
MF

= −k
B
T ln Z

MF
, is then

F
MF

= 1
2NzJm

A
m

B
−1

2Nk
B
T ln

[

1+2 cosh(zJm
B
/k

B
T )

]

−1
2Nk

B
T ln

[

2 cosh(zJm
A
/k

B
T )

]

.

Adimensionalizing,

f(θ,m
A
,m

B
) = 1

2m
A
m

B
− 1

2θ ln
[

1 + 2 cosh(m
B
/θ)

]

− 1
2θ ln

[

2 cosh(m
A
/θ)

]

.

Figure 1: The square lattice and its A and B sublattices.
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(b) Write down the two mean field equations (one for m
A

and one for m
B

). [10 points]

The mean field equations are obtained from ∂f/∂m
A

= 0 and ∂f/∂m
B

= 0. Thus,

m
A

=
2 sinh(m

B
/θ)

1 + 2 cosh(m
B
/θ)

m
B

= tanh(m
A
/θ) .

(c) Expand the free energy f(θ,m
A
,m

B
) up to fourth order in the order parameters m

A

and m
B

. You may find the following useful:

ln
(

2 cosh x
)

= ln 2+
x2

2
− x4

12
+O(x6) , ln

(

1+ 2 cosh x
)

= ln 3+
x2

3
− x4

36
+O(x6) .

[10 points]

We have

f(θ,m
A
,m

B
) = f0 + 1

2m
A
m

B
− m2

A

4 θ
− m2

B

6 θ
+

m4
A

24 θ3
+

m4
B

72 θ3
+ . . . ,

with f0 = −1
2θ ln 6.

(d) Show that the part of f(θ,m
A
,m

B
) which is quadratic in m

A
and m

B
may be written

as a quadratic form, i.e.

f(θ,m
A
,m

B
) = f0 + 1

2

(

m
A

m
B

)

(

M11 M12

M21 M22

) (

m
A

m
B

)

+ O
(

m4
A
,m4

B

)

,

where the matrix M is symmetric, with components Maa′ which depend on θ. The
critical temperature θc is identified as the largest value of θ for which det M(θ) = 0.
Find θc and explain why this is the correct protocol to determine it. [5 points]

From the answer to part (c), we read off

M(θ) =





− 1
2θ

1
2

1
2 − 1

3θ



 ,

from which we obtain det M = 1
6θ−2 − 1

4 . Setting det M = 0 we obtain θc =
√

2
3 .

(2) Consider a two-dimensional gas of particles with dispersion ε(k) = Jk2, where k is the
wavevector. The particles obey photon statistics, so µ = 0 and the equilibrium distribution
is given by

f0(k) =
1

eε(k)/k
B

T − 1
.
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(a) Writing f = f0 + δf , solve for δf(k) using the steady state Boltzmann equation in the
relaxation time approximation,

v · ∂f0

∂r
= −δf

τ
.

Work to lowest order in ∇T . Remember that v = 1
~

∂ε
∂k

is the velocity. [15 points]

We have

δf = −τ v · ∂f0

∂r
= −τ v ·∇T

∂f0

∂T

= −2τ

~

J2k2

kBT 2

eε(k)/k
B

T

(

eε(k)/k
B

T − 1
)2 k·∇T

(b) Show that j = −λ∇T , and find an expression for λ. Represent any integrals you
cannot evaluate as dimensionless expressions. [10 points]

The particle current is

jµ =
2J

~

∫

d2k

(2π)2
kµ δf(k) = −λ

∂T

∂xµ

= −4τ

~2

J3

kBT 2

∂T

∂xν

∫

d2k

(2π)2
k2 kµ kν eJk2/k

B
T

(

eJk2/k
B

T − 1
)2

We may now send kµkν → 1
2k2δµν under the integral. We then read off

λ =
2τ

~2

J3

kBT 2

∫

d2k

(2π)2
k4 eJk2/k

B
T

(

eJk2/k
B

T − 1
)2

=
τk2

B
T

π~2

∞
∫

0

ds
s2 es

(

es − 1
)2 =

ζ(2)

π

τk2
B
T

~2
.

Here we have used

∞
∫

0

ds
sα es

(

es − 1
)2 =

∞
∫

0

ds
α sα−1

es − 1
= Γ(α + 1) ζ(α) .

(c) Show that jε = −κ∇T , and find an expression for κ. Represent any integrals you
cannot evaluate as dimensionless expressions. [10 points]

The energy current is

jµ
ε =

2J

~

∫

d2k

(2π)2
Jk2 kµ δf(k) = −κ

∂T

∂xµ
.

3



We therefore repeat the calculation from part (c), including an extra factor of Jk2

inside the integral. Thus,

κ =
2τ

~2

J4

kBT 2

∫

d2k

(2π)2
k6 eJk2/k

B
T

(

eJk2/k
B

T − 1
)2

=
τk3

B
T 2

π~2

∞
∫

0

ds
s3 es

(

es − 1
)2 =

6 ζ(3)

π

τk3
B
T 2

~2
.

(3) Provide clear, accurate, and substantial answers for each of the following:

(a) For the cluster γ shown in Fig. ??, identify the symmetry factor sγ , the lowest order
virial coefficient Bj to which γ contributes, and write an expression for the cluster
integral bγ(T ) in terms of the Mayer function f(r). [6 points]

Figure 2: Left: the connected cluster γ for problem 3a. Right: the same cluster, with labels.

The symmetry factor is 2! · 2! = 4, because, consulting the right panel of Fig. 2,
vertices 2 and 5 can be exchanged, and vertices 3 and 4 can be exchanged. There are
five vertices, hence the lowest order virial coefficient to which this cluster contributes
is B4. The cluster integral is

bγ =
1

4V

∫

ddx1

∫

ddx2

∫

ddx3

∫

ddx4

∫

ddx5 f12 f15 f23 f23 f25 f34 f35 f45 ,

where fij = e−u(rij)/k
B

T − 1. See Fig. 2 for the labels.

(b) Sketch what the pair distribution function g(r) should look like for a gas of hard
spheres of diameter a, and discuss its salient features. [6 points]

The pair distribution function g(r) is

g(r) =
1

n2

〈

∑

ı 6=j

δ(xi − r) δ(xj)
〉

,

where n is the bulk density. This may be interpreted as the scaled probability den-
sity for simultaneously finding a particle at the origin and a particle at a position r.

4



Isotropy means it is a function of r = |r| alone. As r → ∞, there is no correlation
between these two events, hence g(∞) = 1. For hard spheres, it is impossible for r
to be less than the sphere diameter a. Thus, there is a discontinuity in g(r) at r = a.
There is a characteristic damped oscillation in g(r) with a wavevector corresponding
to the inverse average interparticle spacing, which is proportional to n1/3. All these
features are evident in Fig. 3.

Figure 3: Pair distribution function g(r) for a gas of hard spheres with diameter a, at a
density n ≈ 3π/a3 (η ≡ π

6 na3 = 0.49), showing a comparison of exact (Monte Carlo)
results (dots) and results within the Percus-Yevick approximation (curve).

(c) What is the Maxwell construction? [6 points]

The Maxwell construction is a fix for the van der Waals system and other related
phenomenological equations of state p = p(T, v) in which, throughout a region of
temperature T , the pressure as a function of volume p(v) is nonmonotonic. This is
unphysical since the isothermal compressibility κT = − 1

v
∂v
∂p becomes negative, which

signals an absolute thermal instability, known as spinodal decomposition. The regime
of instability is even larger than this, however, because of the possibility of phase
separation into regions of different bulk density. The situation is depicted in Fig. 4. To
remedy these defects, one replaces the unstable part of the p(v) curve with a flat line
extending from v = v1 to v = v2 at each temperature T in the unstable region, such
that

p(T, v1) = p(T, v2)

v
2

∫

v
1

dv p(T, v) = (v2 − v1) p(T, v1) .
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Figure 4: The Maxwell construction corrects a nonmonotonic p(v) to include a flat section,
known as the coexistence region, which guarantees that the Helmholtz free energy of the
system is at a true minimum. The system is absolutely unstable between volumes vd and
ve. For v ∈ [va, vd] of v ∈ [ve, vc], the solution is unstable with respect to phase separation.
Source: Wikipedia.

(d) Provide explicit examples of models which have a discrete and a continuous global
symmetry, and identify the respective symmetry groups. [6 points]

The parade example of a model with a discrete global symmetry is the Ising model,

ĤIsing = −1
2

∑

i,j

Jij σi σj ,

where σi ∈ {−1, 1} for each i. The global symmetry group here is Z2, which has two
elements: identity (1) and inversion (−1). Under multiplication, these two opera-
tions form a group in the mathematical sense. Under inversion, we have σi → −σi

for all sites i. The Hamiltonian is invariant under any group operation.

As an example of a model with a continuous global symmetry, consider the O(2), or
XY , model,

Ĥ
O(2) = −1

2

∑

i,j

Jij cos(φi − φj) ,

where φi ∈ [0, 2π) for each i. This Hamiltonian is invariant under global O(2) rota-
tions, φi → φi + α.

(e) Explain the principle of detailed balance. [6 points]

Detailed balance says that under equilibrium conditions, there is a perfect balance
between the number of scattering events between any two regions of phase space.
Thus, if w(Γ ′Γ ′

1|ΓΓ1) dΓ ′ dΓ ′

1 is a scattering rate from |ΓΓ1 〉 to a region of volume
dΓ ′ dΓ ′

1 containing |Γ ′Γ ′

1 〉, then we must have

w(Γ ′Γ ′

1|ΓΓ1) dΓ ′ dΓ ′

1×f0(Γ ) f0(Γ ′) dΓ dΓ ′ = w(ΓΓ1|Γ ′Γ ′

1) dΓ dΓ ′×f0(Γ ′) f0(Γ ′)1 dΓ ′ dΓ ′

1 .
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Thus,
f0(Γ ′)f0(Γ ′

1)

f0(Γ )f0(Γ1)
=

w(Γ ′Γ ′

1|ΓΓ1)

w(ΓΓ1|Γ ′Γ ′

1)
.

For the master equation,

dPi

dt
=

∑

k

(

WjiPj − WijPi

)

,

detailed balance means
P 0

i

P 0
j

=
Wji

Wij

,

where P 0
i is the equilibrium distribution.

(4) Which two of Gustav Mahler’s symphonies open in the key of D major?
[1000 quatloos extra credit]

Keys for Mahler’s symphonies:

Symphony No. 1 in D (1887-88)
Symphony No. 2 in c (1888-94)
Symphony No. 3 in d (1893-96)
Symphony No. 4 in G (1899-1901)
Symphony No. 5 in c♯ (1901-02)
Symphony No. 6 in a (1903-04, rev. 1906)
Symphony No. 7 in e (1904-05)
Symphony No. 8 in E♭ (1906)
Symphony No. 9 in D (1909-10; ends in D♭)
Symphony No. 10 in F♯ (1910; unfinished)
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