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3 Metrics Continued

It was mathematicians who first wondered whether a consistent system could be created with different
(non-Euclidean) metrics. Gauss, Bolyai, Lobachevski, Reimann, etc. worked it all out. When Einstein
came along with his great intution that this might be relevant to the real world he applied this math,
“differential geometry” in his GR.

GR takes the matter and energy in a system and predicts the metric. This is done by
solving Einstein’s field equations, something we will not do in this course. Once you have the metric
you can calculate distances, times, and motions of particles. We will do this. GR gives some surprising
results, and so far every prediction that has been tested has been experimentally verified.

3.1 Expanding Universe and FRW metric

For example, consider the entire Universe filled uniformly with matter. One can solve the field equations
for the metric in this case and find (for the right amount of matter):

ds = R(t)\/dx? + dy? + dz2,

where the scale factor, R(r) = (t/ty)'/? at early times and R(t) = (t/tg)?/® or R(t) = exp (Ht/to) at
late times depending on the cosmology. Here ty = 13.7 Gyear is the age of the Universe today. This
is called the Friedmann, Robertson, Walker (FRW) metric and was quite shocking to Einstein when he
first realized this is what his GR theory predicted for uniform matter. The shocking thing is that R(t)
changes with time. Thus the distance between objects changes with time, even when they are “at rest”!
Consider two galaxies a distance D apart today (one at (g, yo, 20) and the other at (z,y, z). Distance
between them is s = \/(x — 20)2 + (y — y0)2 + (2 — 20)2, with ¢t = tg. A few years from now they are
farther apart by a factor (t/t0)2/3 even though their positions, x, xg, y, yo etc. haven’t changed!

This is the expansion of the Universe. Note it is not an explosion that happened long ago and caused
everything to blast apart. Note also what happens when ¢ = 0 in this metric. R(0) = 0, implying s = 0
no matter what the values of z, y, etc. are. That is, at ¢t = 0, everything in the Universe is touching
everything else! This is the big bang. This metric predicts the big bang happened at ¢ = 0, and that the
Universe expanded since then because the metric is changing with time.




3.2 Spacetime metrics and nomenclature

Spacetime metrics combine the 3-D space metric with the time metric. The flat spacetime metric, also
known as the Minkowski metric, is written in Cartesian coordinates as:

ds® = —2dt? + dz? + dy? + d2%.

This combines the flat space 3-D metric with the flat time metric: c¢2dt?. The two are combined together
so that ds is a Lorentz invariant, that is if the time between two events is dt, and the distance between
those same two events is /dx? + dy? + dz2, then the spacetime interval between these two events has
the same value (ds), no matter which inertial reference frame is used to make the measurement. It is
crucial for this to work that the “time part” of the metric have a different sign that the “space part”.

One uses the spacetime metric to meausure the “invariant spacetime interval”, ds, between two events.
One also uses the space part of the metric to measure real distances (distances measured by a meter stick).
The time part of the metric is used to measure real (that is measured by a clock) times between events.
The distance between two events is best measured when the time of the events is the same, that is
measured at the same time, or by setting dt = 0. Thus the proper distance between two objects is
defined as di = v/ds?, with dt = 0. To measure times between events, the events should be at the same
position, i.e. one clock at different times. So we set dr = dy = dz = 0. The proper time between events
is defined as dr = v/—ds?/c, Note, that because the time part of the metric has a minus sign, you have
to add a minus sign to cancel it out. While ds? can be positive, negative, or zero, the invariant interval,
ds is always positive. You should never get an imaginary number out of a metric!

Actually the sign of ds? is very important:

e ds? < 0 implies a time-like interval, meaning the two events can be causally related, that is, it
is possible for the event with the earlier time to have caused the event with the later time.

e ds? > 0 implies a space-like interval. It is impossible for either of these events to have caused
the other. (Like the ends of the same ruler.)

e ds?> = 0 implies a null or light-like interval. These two events can be connected by light
rays only. Note in this case the definitions of proper time and proper distances above don’t apply
because you can’t set dt = 0 or der = 0. The proper time between lightlike separated events is
defined as ds = 0.

Note that with the Minkowski metric, the variable ¢ measures time and the variable z measures spatial
distance. However, in more general metrics, the variables used in the metric do not represent time or
space directly. To get actual time or space measurements you have to use the left-hand side of the metric,
i.e. ds, as described above. The variables in the metric are called the “coordinate time” or “coordinate
distances”, or even just the coordinates, and may or may not correspond to clock time, or meter-stick
distance.

Also, note that many books (and I myself) set the speed of light, ¢, equal to one. This makes the
units easier to work throughout all of Special and General Relativity. It means if you are measuring time
in years, you are measuring distance in light-years, or if you are measuring distance in meters, you are
measuring time in units of the time for light to travel one meter. For example, one can say this 50 minute
class session lasts about 900 billion meters. If we are halfway through it we have about 450 billion meters
to go. A useful thing to know is that light travels about 1 foot in one nanosecond.

When using these units, you have to add back in powers of ¢ in order to get to useful units. There is
always a unique way to do this. In these units velocities are dimensionless, so if you want a velocity in



m/s just multiple by ¢ = 3 x 108 m/s. Energies and masses are related by E = mc?, so if you know the

mass and want an energy just multiply by 2. [e.g. v = .001 means, v = .001c, or v = 300km/s.]

Finally note that in many books the space part of the metric has the minus signs, and the time part
is positive. As long as there is a relative minus sign between space and time, it doesn’t matter which has
the minus sign, but it is very important to pick one convention and keep it. This is called the “signature
of the metric”. We will use the “East coast” signature (- + + +), while others use the “West coast”
signature (+ - - - ). With the opposite signature metric, the definitions of proper distance and proper
time change: e.g. dr = \/@/07 dl = v/—ds?, and several other formulas change as well.

3.3 Schwarzschild metric

The FRW metric is valid on very large scales where matter is distributed approximately uniformly. On
scales the size of the Earth, Solar System, or even galaxies, matter is concentrated in a central source, so
FRW is not the proper solution of Einstein’s field equation and is not the correct metric. The simplest
case is for a spherical object, such as the Earth, Sun, (or black hole!). Solving Einstein’s field equations
for the region outside of a spherical object of mass, M gives the Schwarzschild metric:

2GM 2GM\ !
ds? = — (1 — rc?> dt® + (1 - ) dr? 4+ r2d6? + r? sin? 0d¢?,
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where this is in spherical coordinates with 72 = 22 +y? + 2z2. There are several new features here and we
will spend a lot of time on this metric.

e First note that flat 3-D spatial metric in spherical coordinates is ds? = dr? +r2df? + r2 sin® 0d¢? =
dr? +12dQ?, Note dQ? = df? +sin? 0d¢? is shorthand for the angular part. This looks similar
to, but is different that the 2-D curved metric on the surface of the sphere because here r is a
variable not a constant. You can tell the variables because they are differential (i.e. dr not only r).

e Second, I included the time part of the metric dt. This makes it a spacetime metric, and not just
space. We will talk more about this.

e Third, the time part of the metric has a minus sign! We will come back to what that means and
how to deal with it.

e Fourth, the metric does not change with time. Unlike the FRW metric, the variable ¢ does not
appear explicitly anywhere in the Schwarzschild metric. The dt doesn’t count since that is just tells
how to measure time. Thus this metric is not expanding or contracting and just sits there. (Good
thing).

e Fifth, the metric is spherically symmetric, which is why we switched to spherical coordinates.

e Sixth, there are factors in front of both dr and dt which mean that both the space and the time are
curved in this metric. If those factors were equal to 1, then this would be the 3-D flat spacetime
Minkowski metric in spherical coordinates.

e Seventh, note that something weird happens when 2GM/rc? = 1. The dt? term goes to zero and
the dr? term goes to infinity. This happens when a mass M is squeezed into a ball of radius

2GM
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where rg¢ is called the Schwarzschild radius. This is the event horizon radius of a black hole, and
we expect some weird things to happen at that radius. We will discover that whenever the size of
an object is smaller than its Schwarzschild radius it is a black hole. For the mass of the Sun this
radius is
(2)(6.67 x 10~ m3 /kg s?)(2 x 103%kg M /M) sk M

(3 x 10°m/s)? — AL

where Mg is the mass of the Sun. Thus if you could jam the entire mass of the Sun into a sphere
of radius 3 km, it would be a black hole.

rsc =

Finally, note that if the key factor 2GM /rc? is small, then the Schwarzschild metric is very close
to the 3-D flat space metric. For the Sun, 2GM/rc? = 3 km/7 x 105%km = 4 x 1075, So even at
the surface of the Sun, spacetime is only 4 parts in a million away from being flat. The smallness
of this number is one reason why it is hard to measure the effects of GR that differ from Newton’s
law. Around the Earth spacetime is even closer to flat. Note that far away from the mass, r — oo,
the Schwarzschild metric turns into exactly the flat space metric. This is what we expect of course;
there is no gravity infinitely far away from a mass.



