
Physics 161: Black Holes: Lecture 12: 31 Jan 2011

Professor: Kim Griest

12 Orbits in the Schwarzschild metric; Effective potentials

Let’s go back to our geodesic equations and find the orbits around a black hole or other spherical object.
So far we only considered radial orbits. To extend this to circular and eliptical orbits we will use the
method of effective potentials, which allows one discover the main types of orbits and the main points of
interest without doing the hard work of actually solving the differential equations. This is very general
technique and worth learning.

12.1 Effective Potential for Newtonian Orbits

First let’s do it in Newtonian mechanics, by writing the total energy E = T + V = 1
2mv

2 − GM/r in
spherical coordinates. Recall that in 3-D non-relativistic mechanics, v2 = ẋ2 + ẏ2 + ż2, where ẋ = dx/dt,
etc., and z = r cos θ, x = r sin θ cosφ, y = r sin θ sinφ. Let’s simplify by considering motion in the x-y
plane so z = 0, θ = π/2, and θ̇ = 0. Then ż = 0, ẋ = ṙ cosφ − r sinφφ̇, and ẏ = ṙ sinφ + r cosφφ̇.
Substituting this into the formula for kinetic energy and using sin2 φ+ cos2 φ = 1, we find:

T =
1
2
m(ṙ2 + r2φ̇2).

Next defining the angular momentum l = mvφr = mφ̇r2, so rφ̇ = l/(mr), we can write the total energy
as

E =
1
2
m

(
ṙ2 +

l2

m2r2

)
− GMm

r
,

or
E =

1
2
m(

dr

dt
)2 + Veff ,

with

Veff = −GMm

r
+

l2

2r2m
.

Thus we have written the equation of motion as a one dimensional equation in the radial coordinate, r,
with energy E = T + Veff . The value of doing this is that we are very familar with the the solutions
of a one dimensional equation for a particle moving in a potential well with the shape Veff . Depending
on the total energy, the particle may escape the well and travel off to infinity, or it might be trapped
in the well and oscillate back and forth in the bottom of the well. For small enough energy it might be
at rest at the bottom. So we now think of the radial coordinate r as the one dimension and can easily
understand the possible Newtonian orbits around a spherical object.
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Fig: Effective potential for Newtonian Potential
To discover the possible orbits we draw a plot of r vs. the effective potential. We see that Veff drops

from infinity at r = 0, reaching a minimum at a value of r = rmin, and then rises slowly to Veff = 0 at
r =∞. The exact shape depends upon the constants (conserved quantities) l, and E, as well as M .

The easiest solution to this one dimensional problem is the particle as rest at the minimum. The
particle just sits there, which means r = constant. This is the circular orbit of Kepler’s laws. The radius
of the circular orbit is found by finding the minimum of the effective potential by solving dVeff/dr = 0.
This gives 0 = GMm/r2 − l2/(mr3), or r = GM/v2, where we substituted back in l = mvr before
solving for r. Note that we did not substitute in for l before taking the derivative with respect to r,
since l is a conserved quantity and therefore constant along the orbit. This is the result you get from
F = ma, aka GMm/r2 = mv2/r. In this case, the total energy is at its minimum which is less than zero.
Emin = −mv2 + 1

2mv
2 = − 1

2mv
2. Note if you had a different value of v, that would imply a different

value of l, and a different rcirc.
Another obvious solution is the particle having E < 0, so the particle oscillates around the bottom

between turning points r1 and r2 where E = 1
2mṙ

2 + Veff . These orbits are the elliptical Kepler orbits,
and the position and speed of the orbiting object at turning points can be found from the equation above.
There are also orbits that have E > 0 which can come in from infinity, reach a point of closest approach
and then return to infinity. These are the hyperbolic Kepler orbits. Finally, a particle with E = 0 will
do a similar similar thing, but the orbit will be parabolic.

12.2 Effective Potential for Schwarzschild Orbits

Let’s apply the same effective potential technique to the full r geodesic equation we derived earlier.

m

(
dr

dτ

)2

=
E2

mc2
−
(

1− rS
r

)(
mc2 +

l2

mr2

)
,

where rS = 2GM/c2. Here the effective potential is

Veff =
(

1− rS
r

)(
mc2 +

l2

mr2

)
= m− rS

r
m+

l2

mr2
− rSl

2

mr3
,

and keep in mind that we are using the proper time τ , not t as the time variable, and l is the angular
momentum and E is the total energy. We can spot the different types of orbits as we did for the Newtonian
effective potential. Now we see there are five different types of orbits.

Fig: Effective potential for Schwarzschild Geodesics

1. At the minimum we have a bound circular orbit. The radius is found from dVeff/dr = 0 as before.

2. We also have the bound orbits with turning points r1 and r2 like in the Newtonian case, but here
these turn out to not be elliptical! The orbits don’t close. If we do the perhelion advance of Mercury
we will show this. The time to between r1 and r2 and back is more than the time to go around
φ = 3600, so the perhelion advances.

3. Next, as for Newtonian hyperbolic orbits, we have orbits that start at r = ∞, come in, reach a
distance of closest approach, and go out again. Close examination shows these are close to, but not
exactly the same as, the Newtonian case.
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4. Now look at maximum point on top of the hill. We find this point also when we set dVeff/dr = 0,
since the slope is zero here. If you set a particle there and carefully balanced it, it would stay there.
Thus this is another circular orbit, but it is unstable. A tiny perturbation outward and the particle
will escape to infinity. A tiny perturbation inward and it will fall in the hole.

5. Finally, there is another new type of orbit not found in the Newtonian case, the capture orbit. If
the energy is high enough, the particle goes over the high point and then plunges down into the
hole, never to return. In the Newtonian case a particle can never be captured in this way due to
gravity alone, even though this is how we think when, for example, a comet hits the Sun. Hitting
the Sun’s surface invokes non-gravitational forces; a point mass object could never capture anything
in Newtonian mechanics.

Let’s find the radii of the circular orbits. We can write

Veff = m+
l2

mr2
− rSm

r
− rSl

2

mr3
,

and differentiate and set to zero.

dVeff
dr

= − 2l2

mr3
+
rSm

r2
+

3rSl2

mr4
= 0.

We can simplify this to a quadratic equation in r by multiplying through by mr4:

rSm
2c2r2 − 2l2r + 3rsl2 = 0,

which has two solutions:

r± =
l2

rSm2c2

(
1±

√
1−

3r2Sm2c2

l2

)
,

where I’ve put the c’s back in for fun and reference.
Note that if the quantity in the square root is negative we don’t have a real solution. Thus there is

no circular orbit in that case. This happens when the angular momentum is too small, i.e. there are
only capture orbits. If the quantity in the square root in positive, then we have two solutions, that is,
two circular orbits at different radii, as we saw in the plot. Thus we have two circular orbit solutions if
l2 > 3r2Sm

2c2, and none if not.
When there are two orbits we can tell if the orbits are stable or unstable by taking the 2nd derivative.

If d2Veff/dr
2 > 0, the the curvature of the effective potential is positive and it is a minimum. This

means the orbit is stable. On the other hand if if d2Veff/dr
2 < 0, it means there is a maximum in the

effective potential at that point, and the orbit is unstable. We can do the math, but we saw before from
the picture that the smaller solution (the one with the minus square root) was unstable, and the larger
solution with the plus square is a stable orbit.

From the above discussion we see that the smallest possible stable circular orbit will happen when
the square root term vanishes. This happens when 1 = 3rSm2c2/l2 = 0, or l2 = 3r2Sm

2c2. The value of
the radius for this value of the angular momentum can be found just by plugging this value of l into the
formula for r±, and we find that the minimum stable circular radius is

rmin =
l2

rSm2c2
= 3rS ,

3



that is just exactly three times the Schwarzschild radius. Actually we should check that this orbit is
stable, since for this value of l2, the stable and unstable orbits are the same. Plugging in rmin, and the
value of l2 above into

d2Veff
dr2

=
6l2

mr4
− 2rSm

r3
− 12rSl2

mr5
,

we find that d2Veff/dr = 0 at this combined minimum. Thus this orbit is just really neither stable nor
unstable, but neutral. It is called, however, the minimum or last stable orbit, since an orbit just a tiny
bit larger is in fact stable.

This last stable orbit value is a very important result. When things fall into black holes they have
trouble getting in because of angular momentum. The tend to get ripped apart and form what are called
accretion disks. The material in the disk gradually spirals inward. However, when the radius reaches
3rS , there is no longer a stable circular orbit, so the material all just flows into the hole. Thus we expect
that when we look at real black holes in space we will see material down to 3rS but not any closer. When
we detect X-rays from black holes, we hope we are looking at material radiating from the distance 3rS .
And when we find periodic signals from black hole candidates, we assume this is the radius at which the
material is orbiting.
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