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1 Introduction

This is Physics 161, Black Holes. This course is not a prerequisite for anything, so I am assuming everyone
is taking it for interest. This also means that we can modify the content to what you want to learn about.
So be sure to communicate to me what you are liking and not liking. I hope this course will be a fun
application of your physics, math, and engineering skills, applied to bizarre situations that really occur
in nature. It’s a big Universe out there and the kind of things going on are pretty amazing. I also
find it amazing that we humans — dots on a tiny planet orbiting one of 100 billion stars in one of 100
billion galaxies — can actually work out what the Universe is like. You will hopefully find that the tools
needed to do this are within your grasp. Astrophysics cuts across all disciplines, so you will be using
much of what you learned previously. The prerequisites for this course are the entire Physics 2 or Physics
4 sequence. Since we will be studying Einstein’s Theory of General Relativity (GR) and this is based
upon the simpler Special Relativity, it is crucial that you have studied Special Relativity previously. For
example, if you only tool Physics 2A,B,C and missed out 2D, then you shouldn’t take this course.

GR was Einstein’s crowning achievement and in my opinion is one of the greatest achievements humans
have yet produced. It is almost never taught at the undergraduate level, so there is really no adequate
book. I've developed a way to get to the essential physics without using graduate level math, but we will
stretch your math skills a little. I will teach the extra math you need, so don’t worry.

My plan for the course is to do a mixture of hand waving explanations, analogies, examples, and
mathematical calculations, some of which will be optional for you to learn. So the level of presentation
will vary. For this reason interaction, questions and feedback from you will be essential. If you aren’t
following something, please just raise your hand and say so. GR and Black holes (BH) will definitely
blow your mind, and you will discover that many “dumb” questions have very subtle answers. So be
sure to ask all the dumb questions you come up with. You can and will understand black holes, curved
spacetime, etc. by the end of the quarter.

The grading of this course will be a little different. There will not be any tests. There will be graded
homeworks which will account for 60% of the grade. The other 40% will be from a final paper or talk
given during the final. Everyone must attend the final and hear the talks. There is a handout that tells
about the grading. Note that I am very concerned about academic integrity. You may not copy anything
from anybody else, or from any source whatsoever. You must do all the work yourself. You may talk to
others on how to do homework problems, but you must work out 100% of everything yourself; otherwise



you are cheating and if caught you will suffer very severe consequences. Please read and reread the
handout for details of the grading what is expected.

Finally, note that I have not been able to find an appropriate book for this class. I'm on my 3rd book
this quarter. The one I used last time was too easy; I've used the current required textbook before, but
it may be somewhat too hard. So it is essential that you come to class. That is where you will learn at
the level needed to do the homework.

1.1 Tour of the Universe

We will start with a slide show of the Universe. This is so that you get oriented to what is out there
in the Universe, and so when I say the word “galaxy” or “supernova’ you have a feeling for what I am
talking about.

1.2 Black Holes

Black Holes and the expansion of the Universe (covered next quarter in Physics 162) are two subjects
that rest completely on Einstein’s General Relativity. We will not be able to cover GR in depth, but
we will understand the essential concepts at a level even most PhD physicists do not. And we will do
actual calculations of what happens around and even inside black holes. Most physicists don’t study GR
because it only differs from Newton’s gravity theory and from Special Relativity in a few cases. But GR
is Nature’s choice — whenever GR differs from Newton, GR has shown to be right. It is how Nature
actually works, and requires a radical rethinking of physical reality. GR and Quantum Mechanics are the
two subjects I know that are most likely to surprise you.

1.3 Curved Spacetime

GR says that gravity is not really a “force”; but instead is curved spacetime. What does that mean?

Galileo and Newton view motion with respect to a rigid Euclidean reference frame that extends
throughout all space and endures forever. Within this ideal frame, there exists the mysterious force of
gravity — a foreign influence. Einstein says, “there is no such thing”. Climb into a spaceship and see for
yourself — no gravity there! Suppose you are floating in a space ship with no windows. Can you tell you
whether you are out in the middle of free space or orbiting the Earth? Not really!

This is the starting point of GR, Physics is locally gravity free.All free particles move in straight lines
and constant speed. In an inertial frame, physics looks simple. But such frames are inertial only in a
limited region, i.e. local. Complications arise when motion is described in nearby local frames. Any
difference between direction in one local frame and a nearby frame is described in terms of “curvature of
spacetime”. Curvature implies it is impossible to use a single Euclidean frame for all space. In a small
region, curvature is small, that is it looks flat. Einstein adds together many local regions and has a theory
with no gravity force. Newton has a single flat space and an extra force. These are radically different
views. Einstein is right, but usually Newton’s view is good enough for calculation.

1.4 Example of two surveyors

Fig 1: Surveyors on Earth going north.

Let me give an example that is extremely helpful in understanding what I just said. Consider two
surveyors standing 100 meters apart on the equator. They both decide to start out perfectly parallel



towards the north by rolling a big ball directly north. Some time later as they roll their balls, one notices
that the distance between the two balls is less than the initial 100m. “Hey” one surveyor calls, you aren’t
going straight, you are coming towards me. The other says “I'm going perfectly straight, it’s you that’s
moving.” After a lot of checking they decide they both are rolling the balls straight, but that there must
be some mysterious force that is pulling the balls toward each other. (What is happening of course, is
that both balls are approaching the north pole, and would hit each other there.) They try the experiment
with bigger balls and discover that the big balls come closer as the go north by the same amount. Since
F = ma, the bigger balls require a bigger force and thus they decide this force is proportional to the mass
of the object. In fact, it seems all objects moving north attract all other objects with a force proportional
to their mass. “We have made a great discovery; let’s call this force gravity”, the surveyors decide.

The surveyors think they have a new force because they think they are moving on a flat surface, but
in reality are on the large curved surface of the Earth. They don’t realize the reason for the balls coming
together is the curvature of the Earth’s surface. In fact, you can do the math for the radius of the Earth
and even find the value of the effective “Newton’s constant G” (not the same of course as our normal G,
and this “gravity” does not fall-off as r=2.)

From Einstein’s view, there is no force. The movement together of the balls is proof that the Earth’s
surface is curved. Einstein says the same thing with regard to actual gravity that pulls the falling apple
toward the Earth. No force, but curved spacetime. Note in the example of the surveyors only space
(Earth surface) was curved; in GR both space and time are curved. This view in fact explains a major
mystery of Newton’s law. Newton had two types of mass: m = F/a is “inertial mass”, telling how hard it
is to accelerate things, while the m in F = GMm/r? is the gravitational mass, telling how much gravity
comes off the object. Why are these masses the same? In Coulomb’s law, the source of the force is the
charge, and it is not the same as the mass. This is a mystery, but it has been tested carefully many times
and the two masses are always equal. Einstein’s answer is that there is only the inertial mass, which
curves spacetime. Gravity as a force, doesn’t exist.

1.5 Tidal force as curvature

The principle of relativity you learned in Special Relativity says physics is the same in all inertial frames.
Consider traveling in a moving train or plane. Drop a ball; it falls just like when standing on the ground.
You can play catch or pour wine on a plane, even though for someone watching from outside the plane
the ball or wine would travel in a parabola. The principle of relativity says one cannot tell whether or not
one is moving in a frame with constant velocity (except by looking outside at someone else). So consider
a mass floating in an orbiting rocket ship; not touching anything, just floating. Where does it get it
marching orders from? Newton says both the mass and ship get their orders from the distant Earth.
Einstein says the mass gets its orders locally. A free falling frame is a “local inertial frame” so since there
is nothing inside the spaceship pushing on the mass, it stays still with respect to the spaceship. In fact,
according to Einstein both the space ship and mass are sampling the local curvature of spacetime which
is what is causing them to orbit. Things move in “straight lines” in inertial frames; the mass can veer,
but only responding to structure of spacetime right there. Newton says the mass would go “straight” in
his ideal all pervading reference frame but the Earth deflects it.

How do you tell if a frame is inertial? Easy, just check every particle, light ray, etc. to see if they
move in straight lines at constant speed. So inside the space ship it is an inertial frame and everything
moves simply. Simple? Too simple! Where is gravity at all? How do we see the curvature?

Fig. 2: Balls in a space ship



Consider two balls in a space ship. We put them side by side 25 m apart. If the space ship is in orbit,
the balls just float there. They don’t move apart or together, and if there were no windows, there would
be no way to tell they were in orbit above the Earth or in the middle of space far from any star or planet.
Now, instead of in orbit, drop the entire space ship from a height of 250 meters above the earth. The ship
and balls both fall straight down, and will hit the ground 7 seconds later (t = /2d/g). While falling, the
balls still seem to be floating in deep space away from all forces. However, if you check carefully there
is a small effect. Going straight down towards the Earth’s center, the balls are about 1 x 10™2 m closer
together when they hit. [ = r, dl/l = dr/r, dl = ldr/r = (25)(250)/6.4 x 105 = 1 x 1073>m. Watching
this from the ground it is clear what is happening, but inside it seems as if the balls are attracting each
other. After 7 seconds they have moved about 1 mm closer. This is not actually the gravity attraction
between the two balls, but is the “tidal” force and in fact proves that the space is curved. Note that
if your measuring instruments had an accuracy of worse than 1 mm, then this attraction could not be
detected. We say that to an accuracy of 1 mm and a time under 7 seconds this 25 m wide space is a
local inertial frame, but for longer times, or better accuracy, it is not. Smaller size ships and shorter
times give more approximately inertial frames. However, if you add enough small frames together you
can detect the curvature. Consider a ring of balls above the Earth’s surface each separated by 25 m
and drop them all together. After 7 seconds they are all 1 mm closer. In each frame you can’t see it,
but by adding up all the frames you see that entire circle around the Earth has shrunk. The factor
is 1 mm/25000 mm = 1/25000, and the distance from the center of the Earth shrinks by same factor
(1/25000)(6.4 x 10°)m = 250m. Note this is just like the distance around a line of latitude shrinks for
surveyors rolling balls toward north pole. The smallness of this effect in a single spaceship actually shows
the smallness of the curvature of spacetime, which is part of the reason GR is not easy to experimentally
distinguish from Newton.

1.6 The metric

In GR the key concept is the metric. GR replaces gravity with curvature of spacetime. The metric tells
how to measure distances in space and time. The metric contains all the info about curvature in a simple
formula. It is the key to understanding GR and to be able to calculate anything.

Examples of metrics'

e 3-D flat space metric: ds = +/dx? + dy? + dz2, (or ds* = dx? + dy? + dz?). This is just the
Pythagorian theorem! (We use dx rather than = because we want to talk about “local” curvature.
We find z from dx by integrating.)

e 2-D flat space metric: ds? = dx? + dy?.

o 4-D flat space: ds? = dx? + dy? + dz% + dw?. w is “4th” dimension; note how easy this is to write
mathematically, but it is hard to visualize! Note the number of dimensions described by a metric
is the number of different differentials.

e 2-D curved space metric (surface of sphere):
Fig. 3: Coordinates for surface of sphere

1Technically the metric is a rank two tensor, e.g. a matrix, and what we are showing here is called the “line element”. We
will use the terms “metric” and “line elemement” interchangeably in this course, since they contain the same information,
but in a more advanced course the distinction would be made.



ds? = r2d6%+1r3 sin® 0d¢?, where 7q is a constant. Note if you define dz’ = rodf and dy’ = ¢ sin fd¢
then locally ds® = dx'? + dy'?, and it looks like flat space in small enough areas. However, if you
move far then 6 changes, and the distance between points on a sphere is not given by a flat space
formula: s # \/(v0 — 2/)% + (yo — ¥')2. You need to do the integral:

01,01 01,01
s = / ds = / \/r§d02 + 13 sin” 0dp2.
00,90 00,90

This is a longer distance than the flat space distance between these points.

e 3-D curved metric. Above we had a curvature in 2-D space. How about curved 3-D space? Easy
to write mathematically, but hard to visualize. For example, ds?> = /22 + 32 + 22dz? + dy? + dz?
is a curved 3-D space. Just add almost any mathematical function to the flat 3-D metric and

it will be curved. We can try to visualize using “embedding”. In the curved 2-D metric example we can
visualize the curvature by drawing a 3-D sphere, that is by curving the 2-D surface through 3-D space.
Similarly we could visualize curved 3-D space as curved through a 4-D space! But note the curvature of
3-D space does not need the 4th dimension. That sounds hard, but if we can ignore one of the 3-D spatial
dimensions, we again have curved 2-D embedded in 3-D. We will show examples later. Note that the
space around the Earth is curved, but we can’t see that curvature! We can measure its effects however
and prove it is there! It becomes an experimental question.

1.7 Using a metric to find distances, areas, etc.

The left hand side of a metric (aka line element) gives the real distance measured in meters. The right
hand side gives the coordinates, specified by the differentials, as well as functions and constants. The
coordinates may or may not be in units of distance, so to find an actual distance, area, or volume, the
left hand side must be used. For example, consider the 3-D metric

dSQ = f(fE, Y, Z)d:EQ + g(xa Y, Z)dyQ + h(l’, Y, Z)dzza

where f(z,y,2), g(z,y, 2), and h(z,y, z) are functions that specify the curvature of the space. To find a
distance in the x direction, one would hold y and z constant. That is one would set dy = 0 and dz = 0,
to get ds = dl, = +/fdx. The actual distance from zy to x; would therefore be I, = f;Ol V/fdx. Likewise

to measure a distance in the z direction you would set dz = dy = 0 and integrate dl, = Vhdz. The
distance along an arbitrary curve can be found by factoring out, say dz, and integrating: [ = [dl =
IV f + g(dy/dz)? + h(dz/dx)2dz, where dy/dx and dz/dx are calculated along the integration path.
Finally, while in flat space a small area is given by dA = dxdy, in curved space one must use
dA = dl,dl, = \/fgdzdy (or dl,dl,, etc.). The volume element is thus dV = dl,dl,dl, = \/fghdxdydz.




