
Physics 161: Black Holes: Lecture 9: 24 Jan 2011

Professor: Kim Griest

9 Geodesics of Schwarzschild metric from Euler-Langrange

Let’s return to our work on geodesics and apply the Euler-Lagrange equations to find the geodesics of the
Schwarzschild metric. Remember that the Schwarzschild metric is the unique metric around stationary,
spherically symmetric, uncharged objects, so what these geodesics do is tell us how thing move around
the Earth, around the Sun, and around uncharged, non-spinning black holes. These are the General
Relativistic extension of Newton’s and Kepler’s laws of motion. Recall the Schwarzschild metric is

ds2 = −
(

1− 2GM
rc2

)
dt2 +

(
1− 2GM

rc2

)−1

dr2 + r2dθ2 + r2 sin2 θdφ2.

As above, we set c = 1, and take affine paramter λ = s = τ , and extremize s =
∫
Ldτ , with

L = 1 =

[(
1− 2GM

r

)
ṫ2 − ṙ2

1− 2GM
r

− r2θ̇2 − r2 sin2 θφ̇2

]1/2

The Euler-Lagrange equation for t is then

d

dτ

∂L

∂ṫ
− ∂L

∂t
= 0,

which since ∂L/∂t = 0, implies there is a conserved quantity we will call energy per unit mass:

∂L

∂ṫ
≡ E

m
.

Calculating,
∂L

∂ṫ
=

1
2

[· · ·]−1/2(1− 2GM
r

)2ṫ,

where we abbreviated L = [· · ·]1/2. Using L = 1, we find our t equation(
1− 2GM

r

)
ṫ =

E

m
.

We don’t yet know that the constant has anything to with energy, but we call it E/m, because of our
experience with the Minkowski metric. For r → ∞, the Schwarzschild metric goes to the Minkowski
metric and for the Minkowski metric ṫ = E/m.
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Next we find the φ equation:
d

dτ

∂L

∂φ̇
=
∂L

∂φ
= 0,

so again we have a conserved quantity pφ = ∂L/∂φ̇ ≡ −l/m, where we will call this conserved quantity
the angular momentum per unit mass. Recall Noether’s theorem which says if physics is unchanged by a
rotation then angular momentum is conserved. Since the metric does not depend explicitly on the angle
φ, we get that result here. Doing the differentiation we find

∂L

∂φ̇
=

1
2

[· · ·]−1/2(−r2 sin2 θ2φ̇) = −r2 sinθ φ̇.

Thus our φ equation reads
l

m
= r2 sin2 θφ̇.

Note that it makes sense that we called the constant of motion l/m, since this matches the normal
definition of angular momentum, l = ~r × ~P , with v = r sin θφ̇.

Next, we consider the θ equation. Here we find that

d

dτ

∂L

∂θ̇
=
∂L

∂θ
6= 0,

thus we do not have a conserved quantity for this equation. We find

∂L

∂θ
=

1
2

[· · ·]−1/2(−r2φ̇22 sin θ cos θ) = −r2φ̇2 sin θ cos θ,

and
∂L

∂θ̇
=

1
2

[· · ·]−1/2(−r22θ̇) = −r2θ̇.

Thus our θ equation reads:
d

dτ
(r2θ̇) = r2φ̇2 sin θ cos θ.

Finally we come do the r equation, which is kind of messy because of all the explicit r dependence in
the metric. However, we don’t have to do it, because we can get the fourth equation we need to specify
the equations of motion from our definition of the Lagrangian, L2 = 1:

1 = (1− 2GM
r

)ṫ2 − ṙ2

(1− 2GM
r )
− r2θ̇2 − r2 sin2 θφ̇2.

Since our object and metric are spherically symmetric we can simplify things by only considering motion
in the equatorial plane (θ = π/2, and θ̇ = 0). Of course we have to remember that we made this
assumption later when we use our equations! If we try to consider motion that has a changing θ, or
which is not in this plane we would need to come back to the equation above. In this case then, the
equation L = 1 becomes:

1 = (1− 2GM
r

)ṫ2 − ṙ2

(1− 2GM
r )
− r2φ̇2.
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Now eliminate variables other than r, using the constants of motion we have from the above equations:
l/m = r2φ̇, and E/m = (1− 2GM

r )ṫ, to get:

1 =
E2

m2(1− 2GM
r )
− ṙ2

(1− 2GM
r )
− l2

m2r2
.

We can write this in a nicer form by solving for mṙ2,

mṙ2 =
E2

m
−
(
m+

l2

mr2

)
(1− 2GM

r
),

Remembering the definition of ṙ and using dimensional analysis to put back the c’s, we can write this as:

m

(
dr

dτ

)2

=
E2

mc2
−
(

1− 2GM
rc2

)(
mc2 +

l2

mr2

)
.

Notice that, as I mentioned in my handwaving description, a step in proper time dτ forces a step dr in
the r direction. Thus this geodesic equation shows that things fall due to the spacetime curvature of the
metric. We will look at these geodesic equations in some detail, but for now let’s just take one limit of
this last equation.

Suppose the angular momentum l = 0, which we might expect for radial infall towards a spherical
mass. Our equation then is:

m(
dr

dτ
)2 =

E2

mc2
−
(

1− 2GM
rc2

)
mc2 = 0.

Next consider a case where you start at rest far from the object so that at proper time τ = 0, m(dr/dτ)2 =
0, and r →∞. Our equation becomes:

E2

mc2
− (1− 2GM

∞
)mc2 = 0,

or E2/mc2 = mc2, or simply E = mc2! So at τ = 0 the total energy is just E = mc2. In Newtonian
mechanics the energy at infinity is usually defined as E = 0. Isn’t it nice how these important results
are just built right into the general relativistic view of spacetime. Also since energy E is conserved along
geodesics we know that E = m always. This E is not the Newtonian energy; it is the conserved quantity,
which is better than the sum of 1

2mv
2 +V . Finally note that if we would have started with some velocity

at r =∞ then E > mc2 but it still would have been conserved.
At later times during this radial infall from rest, our equation becomes:

m(
dr

dτ
)2 =

E2

mc2
−mc2 +

2GM
rc2

mc2 =
2GMm

r
.

That is simply
1
2
m(

dr

dτ
)2 − GMm

r
= 0,

which looks remarkably like the Newtonian case 1
2mv

2−GMm/r = 0! But this is not the same equation.
It is fully relativistic and the time derivative is τ not t (remember t = γτ in SR). In general you integrate
these 4 equations to get the complete picture of motion near the Earth, Sun, or Black Hole. We will
come back to these soon.
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