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7 More Euler-Langrange plus gravitational redshift

7.1 Conserved quanties in the Euler-Lagrange formalism: Energy and Mo-
mentum

Note that as we did the derivations of the geodesics above we came across quantities that did not change
as we traced along the affine parameter, that is we found conserved quantities. This is a general and
important thing to watch for in using the Euler-Lagrange formalism. In general there will be a conserved
quantity whenever the Lagrangian L does not depend explicitly on one of the variables. Actually there
will be one conserved quantity per variable. This is easy to see. To be general, let’s use the 4-vector
notation xµ, where x0 = t, x1 = x, x2 = y, and x3 = z, so µ runs from 0 to 3 and xµ can represent any
of the spacetime variables. In this notation, all the Euler-Lagrange equations can be written in one line:

∂L

∂xµ
− d

dλ

∂L

∂dẋµ
= 0.

So if L does not depend on one variable, call it xµ, we have ∂L
∂dxµ

= 0, and the Euler-Lagrange equation
reads: d

dλ
∂L
∂ẋµ

= 0. Thus along the geodesic (running over values of the affine parameter λ), the quantity
∂L
∂ẋµ

is a constant.
In general we define pµ, the conjugate momentum, of a variable xµ, as

pµ =
∂L

∂ẋµ
.

Thus we see that if the Lagrangian does not depend explicitly on a variable, then that variable’s conjugate
momentum is conserved. This pµ may be an actual momentum, but it could be some other conserved
quantity. If one takes L = 1

2mẋ
2, then in fact px = mvx, which is conserved since L does not depend

upon x. If instead we took L = 1
2mẋ

2 − V (x), then the conjugate momentum is still px = mvx, but not
it is not conserved along the geodesic as the affine parameter (t) changes. Of course this is because there
is a force due to the potential energy.

For the Minkowski metric, let’s see what these conjugate momenta are. We saw above that the metric
did not depend explicitly on any of the xµ; t,x, y, or z, thus we expect to have 4 conserved quantities.
Consider the t equation with affine parameter proper time τ . We have pt = ∂L

∂ṫ
= ṫ. Likewise for the x
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equation we find px = ẋ, py = ẏ, etc. During the above calculation we found that the constant for the
Euler-Lagrange equations (which we called ct) was equal to the Lorentz factor γ. Thus we see that

p0 = pt = γ = E/m,

where we noticed that in special relativity the energy of a particle is E = mγ, where m is the rest mass.
Thus the conserved quantity associated with the t variable is nothing other than the energy. (It is energy
per unit mass actually, but since pt is a constant we can multiply by another constant m and still have
a constant.)

We also previously found the momentum conjugate to the x variable, px = ∂L
∂ẋ = ẋ = cx. Using

cx/ct = v from before, we have px = vxct = vxpt = vxγ. But in special relativity the momentum is just
mvγ, so see that px = Px/m, is the momentum per unit mass. (We call the actual momentum P to
distinguish it from the momentum per unit mass.) Thus the 4 conserved quantities we discovered are
just the energy and 3 components of momentum.

We can find the relation between these quantities from our definition of the Lagrangian: L = 1 =√
ṫ2 − ẋ2 − ẏ2 − ż2. Substituting in pt = ṫ = E/m, px = ẋ = Px/m, etc. we find

1 =
√

(E/m)2 − (Px/m)2 − (Py/m)2 − (Py/m)2.

Squaring, multiplying through by m2, and using P 2 = P 2
x + P 2

y + P 2
z , we find the well known result

E2 = P 2 +m2. Finally using units to put back the c’s, E2 = P 2c2 +mc4, which reduces to the famous
E = mc2 in the limit of zero velocity (zero momentum).

7.2 Gravitational Redshift from the Schwarzschild metric

We already discussed the curvature of time in the Schwarzschild metric. Clocks run slower in a gravitation
field (at smaller values of r). This is one of the more measurable effects of GR. Measurements are possible
because atomic transitions act like small clocks which send messengers (photons) to us here at Earth.
Recall the proper time in the Schwarzschild metric:

dτ = dt

√
1− 2GM

rc2
,

where dτ is tick of a clock measured at r, and dt is the length of that same tick measured far away
(r →∞).

Now consider some atomic transition, for example, the n = 3 to n = 2 transition of atomic Hydrogen.
This is called the H-alpha transition and results in emission of a photon with energy Eγ = 13.6eV( 1

32 −
1
22 ) = 1.89 eV. Using λ = c/ν, and Eγ = hν, we find the corresponding wavelength Hα : 6563.5
Angstroms. Now in the frame at r, the photon has a fixed frequency ν0, and each oscillation is like a
little clock ticking with period dτ0 = 1/ν0. Thus the time between crests in the outgoing photon measures
dτ . That same photon travels out to us at r = ∞. Then that same period is observed as dt. Thus the
dτ∞ ≡ dτobs = dt = dτ0/

√
1− 2GM/rc2 is longer. Using the definitions above of ν and λ we see that

the frequency decreases by the same factor and the more easily observed wavelength is longer at when
observed at infinity than the emitted wavelength at r by

λobs =
λ0√

1− 2GM
rc2

=
λ0√

1− rS
r

,
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where we used the definition of the Schwarzschild radius rS .
The redshift of an emission line is defined as

z =
∆λ
λ0

=
λobs − λ0

λ0
= (1− rS

r
)−1/2 − 1,

where λ0 is the emitted wavelength in the rest frame of the atom. Note for small values of 2GM/rc2 =
rS/r, this expression can be Taylor expanded as z ≈ GM/rc2 = 1

2rS/r.
This gravitational redshift is totally different from either the normal Doppler shift redshift caused by

an atom moving away from the observer, or the cosmological redshift caused by the expanding Universe.
Let’s see how big the effect is by calculating it for some typical astronomical objects. First how about
emission from the surface of the Sun? We expect the wavelengths recieved by us on Earth to be longer
than the emitted wavelengths since the emitted photons have to climb out of the potential well of the
Sun where clocks run slower. Using the approximation above z� ≈ 1

23km/7 × 105km ≈ 2 × 10−6. This
is not a very big effect; a clock on the surface of the Sun loses about 30 seconds/year. For H-alpha the
line redshift would be only 0.014 Angstroms.

How about for a white dwarf star? The mass of a white dwarf is about 0.6M�, and the radius is about
5500 km, near to the Earth radius. Thus z ≈ 1

2 (.6)(3km)/5500km ≈ 1.6×10−4, and the wavelength of H-
alpha emission recieved on Earth would be 6563.5(1+z) = 6564.6 Angstroms, quite easily distinguishable
from local H-alpha lines. This result agrees well with the measurements from the nearby white dwarf
star Sirius B. A clock on the surface of Sirius B would lose about 0.6 second/hour.

Next consider the case of a neutron star, with M = 1.4M� and R = 10 km. Now rS = (1.4)(3km) =
4.2 km, so really should not use the approximation, but calculate z = [1−(4.2km/10km)]−1/2−1 = 0.313.
This is big shift: the H-alpha line would appear at 8618.3 Angstroms and clocks would run 31% slower.

Finally what about light emitted from the Schwarzschild radius of a black hole? With r = rS ,
z →∞! Light would be invisible since it would be redshifted to infinitely low energies. Clocks sitting at
that location would appear to have stopped!

8 Light Bending and Gravitational Redshift from the Equiva-
lence Principle

To find proper answers in GR we calculate using the metric, in our case the Schwarzschild metric, but
there is an interesting, more intuitive way that uses the Equivalence Principle directly. Let’s look briefly
at two examples.

8.1 Light bending

Imagine someone in a falling elevator. The equivalence principle says that experiments done in this falling
frame will give the same results as experiments done floating in free space far from any massive object.
Suppose the guy in the falling elevator shines a laser beam horizonally from one side of the elevator to the
other. That light must follow geodesics and therefore go “straight” across the elevator; if the beam leaves
from a height of 3 feet above the elevator floor, it must arrive on the other side also three feet above the
floor. From the point of view of the elevator man, the light must travel exactly horizontally. But now
think of someone watching through the (glass) walls of the elevator. The man shoots the laser from a
height of 3 feet above the floor, but then while the light is traveling across, the elevator continues to fall.
Thus when the light hits the opposite wall 3 feet above the floor, the wall has moved down. Therefore
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the light cannot go straight in the Earth frame. The light must also fall. This gedanken experiment
shows the light must fall in a gravitational field in the same way as everything else. Of course, from the
point of view of GR, light is just following the geodesic through a curved spacetime; we will calculate
those soon, but here we forsee what that calculation will give. In particular, light from distant stars
travelling near the limb of the Sun must be “deflected” towards the Sun. Sir Author Eddington did this
experiment in 1919, and it garnered world wide fame for Albert Einstein, because it was one of the first
proofs of Einstein’s GR theory. In the homework, I am asking you to calculate how far the light falls in
a gravitational field, that is how much it bends.

8.2 Gravitational Redshift again

The equivalence principle can also be used to show that light must gravitationally redshift. Again consider
our man in a falling elevator. This time he shoots his laser from the floor to the ceiling.

First think about it from the point of view of someone outside watching through the glass walls. In
the Earth frame the freely falling elevator picks up speed while the light is in transit, and so there is
Doppler shift caused by the speeding elevator ceiling. The time the photons spend in transit is t = h/c,
where h is the height of the elevator, and the speed increase of the elevator is ∆v = gt = gh/c, where
g = GMEarth/r

2 = 9.8m/s2. We could find the expected Doppler shift from the relativistically correct
formula νobs = ν0

√
(1 + ∆v)/(1−∆v), but a Taylor expansion of this is good enough for the slow speeds

involved here: νobs ≈ ν0(1 + 1
2∆v)(1 + 1

2∆v) ≈ ν0(1 + ∆v), or ∆ν = νobs − ν0 = ∆vν0 Thus in the Earth
frame we expect the light beam to be blue shifted by ∆ν/ν0 = ∆v/c = gh/c2, where I put the c′s back in.
However, the equivalence principle says that this cannot be! The man in the elevator can’t tell whether
he is falling or floating freely in deep space, so he expects correctly that the frequency of light recieved
at the elevator’s ceiling is the same as the frequency he sent from the floor. Thus there must be another
effect to cancel this one! The light traveling up must be gravitationally redshifted to counterbalance this
effect. Thus there must be a factor of ∆ν/ν0 = −v/c = −gh/c2 = −GMh/r2c2. This is not quite the
result we got before from the metric, since there is a factor of r−2 rather than r−1, but before we found
the redshift between r = r0 and far away (r = ∞) and here we found it only between r0 and r. So we
can continue with this derivation by integrating the small redshift we found ∆z ∼ ∆ν/ν0 from r0 to ∞.

z ∼
∫ ν∞

ν0

dν

ν
≈

∫ ∞
r0

−GM
r2c2

dr.

This gives ln(ν∞/ν0) ≈ −GM/r0c
2, or λ∞ = λ0 exp (GM/r0c

2). This is still not the correct answer,
but if we assume the factor in the exponential is small and Taylor expand the exponential using ex ≈
1 + x+ x2/2 + ..., we do find λ∞/λ0 ≈ 1 +GM/rc2, or z = GM/rc2 = 1

2rS/r, the Schwarzschild result
for small z.
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