Final solutions

Problem 1

(a) We can write

$$
S_{i} S_{j}=-m^{2}+m\left(S_{i}+S_{j}\right)+\delta S_{i} \delta S_{j}
$$

The last term is due to fluctuations. We then have the mean field Hamiltonian

$$
H_{M F}=\frac{1}{2} N z J m^{2}-(z J m+B) \sum_{i} S_{i}
$$

(b) The partition function is

$$
Z=e^{-\beta F}=e^{-\frac{1}{2} \beta N z J m^{2}}\left(\sum_{S=-1,0,+1} e^{\beta(z J m+B) S}\right)^{N}
$$

from which we get

$$
F=\frac{1}{2} N z J m^{2}-N k_{B} T \ln \left[1+2 \cosh \left(\frac{z J m+B}{k_{B} T}\right)\right] .
$$

In terms of dimensionless quantities we get

$$
f=\frac{1}{2} m^{2}-\theta \ln \left[1+2 \cosh \left(\frac{m+h}{\theta}\right)\right] .
$$

Problem 2

The first condition gives

$$
\left(\frac{\partial P}{\partial v}\right)_{T}=-\frac{R T}{(v-b)^{2}}+\frac{3 a}{v^{4}}=0
$$

which is equivalent to

$$
R T=3 a \frac{(v-b)^{2}}{v^{4}}
$$

The second condition gives

$$
\left(\frac{\partial^{2} P}{\partial v^{2}}\right)_{T}=\frac{2 R T}{(v-b)^{3}}-\frac{12 a}{v^{5}}=0
$$

or, equivalently

$$
R T=6 a \frac{(v-b)^{3}}{v^{5}}
$$

Equating the two equations for $R T$ we get $v_{c}=2 b$. Substituting this result in anyone of the equations for $R T$ we obtain

$$
T_{c}=\frac{3 a}{16 b^{2} R}
$$

Substituting v_{c} and T_{c} in the equation of state we get

$$
P_{c}=\frac{a}{16 b^{3}} .
$$

Finally

$$
\frac{R T_{c}}{P_{c} v_{c}}=\frac{3}{2}
$$

which is a very low number.

Problem 3

As explained in class, we can assume that the chemical potential is zero in the region of Bose-Einstein condensation. The number of particles in the excited state is thus

$$
N_{e x c}=\int_{0}^{\infty} \bar{N}_{\epsilon} g(\epsilon) d \epsilon
$$

where

$$
\bar{N}_{\epsilon}=\frac{1}{e^{\epsilon / k_{B} T}-1},
$$

and

$$
g(\epsilon) d \epsilon=\frac{V 4 \pi p^{2} d p}{h^{3}}=\frac{V 4 \pi}{h^{3}}\left(\frac{\epsilon}{A}\right)^{2 / s} \frac{1}{s}\left(\frac{\epsilon}{A}\right)^{1 / s-1} d \epsilon
$$

so that

$$
N_{e x c}=\text { const } \times V \int_{0}^{\infty} \frac{\epsilon^{3 / s-1}}{e^{\epsilon / k_{B} T}-1} d \epsilon
$$

If we set $x=\epsilon / k_{B} T$, we get

$$
N_{e x c}=\text { const }^{\prime} \times V\left(k_{B} T\right)^{3 / s}
$$

Therefore, since T_{B} is determined by the condition $N_{e x c}=N$ we find that

$$
T_{B} \propto\left(\frac{N}{V}\right)^{s / 3}
$$

The fraction

$$
\frac{N_{g s}}{N}=1-\left(\frac{T}{T_{B}}\right)^{3 / s}
$$

Finally, we find that

$$
U=\int_{0}^{\infty} \epsilon \bar{N}_{\epsilon} g(\epsilon) d \epsilon \propto T^{3 / s+1}
$$

from which we find

$$
C_{V} \propto T^{3 / s}
$$

and

$$
S=\int_{0}^{T} \frac{C_{V} d T}{T} \propto T^{3 / s}
$$

