- 1. Estimate the distance in cm between the central bright region and the third dark fringe on a screen 5.00 m from two slits 0.500 mm apart, when the slits are illuminated by 500 nm light.
 - (a) 3.47
 - (b) 2.15
 - (c) 1.75
 - (d) 1.50
 - (e) 1.25
- 2. An optical coating (n = 1.4) on a glass lens (n = 1.5) is designed to minimize reflection of light of 500 nm wavelength. How thick (in nm) should the coating be?
 - (a) 84
 - (b) 94
 - (c) 89
 - (d) 99
 - (e) 179
- 3. An interference pattern is produced at point P on a screen as a result of direct rays and rays reflected off a mirror shown in the figure. If the source is 100 m to the left of the screen, 1 cm above the mirror, and the source is monochromatic ($\lambda = 500nm$), find the distance y in mm to the first dark band above the screen.

(a) 1.0

- (b) 2.0
- (c) 1.5
- (d) 2.5
- (e) 5.0
- 4. A diffraction grating with 4000 lines/cm is illuminated by light from the sun. The solar spectrum is spread out on a white wall across the room. At what angle from the located center line is blue light (400 nm)?
 - (a) 9.8°
 - (b) 9.2°
 - (c) 10.1°
 - (d) 9.4°
 - (e) 9.6°
- 5. A stopping potential of 3.2 V is needed for radiation whose wavelength is 200 nm. The work function in eV of the material is $(h = 6.626 \times 10^{-34} J \cdot s; c = 3.00 \times 10^8 m/s; e = 1.60 \times 10^{-19} \text{ C}; 1eV = 1.602 \times 10^{-19} J)$
 - (a) 4
 - (b) 3
 - (c) 5
 - (d) 6
 - (e) 2
- 6. The maximum kinetic energy of photoelectrons depends on
 - (a) the frequency of the light.
 - (b) the intensity of the light.
 - (c) the number of photons that reach the surface per second.
 - (d) the number of quanta.
 - (e) the speed of light.
- 7. A photon whose energy is $8 \times 10^{-15} J$ is scattered off an electron at an angle of 90°. What is the wavelength of the scattered wave in m? ($m_e = 9.11 \times 10^{-31} kg$; $h = 6.626 \times 10^{-34} J \cdot s$; $c = 3.00 \times 10^8 m/s$; $e = 1.60 \times 10^{-19} C$)
 - (a) 2.73×10^{-11}
 - (b) 2.25×10^{-11}

- (c) 2.50×10^{-11}
- (d) 2.40×10^{-11}
- (e) 2.48×10^{-11}
- 8. Light of wavelength 550 nm in vacuum enters a substance with an index of refraction of 1.47. What is the wavelength in nm in the medium?
 - (a) 293
 - (b) 357
 - (c) 374
 - (d) 388
 - (e) 401
- 9. Two mirrors are at right angles to one another. A light ray is incident on the first at an angle of 30° with respect to the normal to the surface. What is the angle of reflection from the second surface?
 - (a) 30°
 - (b) 60°
 - (c) 45°
 - (d) 53°
 - (e) 75°
- 10. A person in a boat sees a fish in the water (n=1.33) at an angle of 40° relative to the waters surface. What is the true angle in degrees relative to the waters surface?
 - (a) 40
 - (b) 35
 - (c) 50
 - (d) 55
 - (e) 61
- 11. A plano-convex lens is made of glass (n=1.5) with one surface flat and the other having a radius of 20 cm. What is the focal length in cm of the lens?
 - (a) 20
 - (b) 30
 - (c) 40

- (d) 10
- (e) 50
- 12. What is the focal length in *cm* of a convex mirror in which a virtual image is located 10.0 *cm* from the mirror and the object is 30.0 *cm* from the mirror. Both object and image are located on the principle axis of the mirror.
 - (a) -5
 - (b) -10
 - (c) -15
 - (d) -20
 - (e) -25
- 13. The image distance, q_A , of object A is twice as far from a converging lens as the image distance, q_B , of object B. Both images are real images. Which statement regarding the object distances is correct?
 - (a) $p_B < p_A$
 - (b) $p_B = p_A$
 - (c) $p_B > p_A$
 - (d) $p_B < -p_A$
 - (e) $p_B = -p_A$
- 14. A convex lens and a concave mirror each have focal length f. The lens is placed a distance 4f in front of the mirror. Then an object is placed a distance 2f in front of the lens. The image produced by the lens-mirror system will be
 - (a) 2f in front of the mirror and inverted.
 - (b) 2f behind the mirror and upright.
 - (c) 2f in front of the lens and inverted.
 - (d) 2f in front of the lens and upright.
 - (e) 2f behind the mirror and inverted.