Homework Set 5
Due Thursday, 07/28

1. Timedilation and length contraction

Problem 1: A spaceship travels from Earth to a star 100tyggars away. The ship is
moving at a constant speed of @85

(a) How long does the trip take according to aseoker on Earth?
(b) How long does the trip take according to asener on board the spaceship?

(c) What is the distance from Earth to the stacpading to the observer on the
spaceship?

Solution:

(a) According to the observer on Earth, the shijwes at a speed of 085 0.85 light-
years per year. The time for the trip is theref®8ly/ 0.85 ly/yr = 118 yrs.

(b) The time according to the observer on Earthrger than the proper time measured
by an observer on the spaceship due to time dilatio
t — —
t=aty  ty=—=1/1—v2/c? = 118yrsv/1 — 0.852 = 62yrs

The time for an observer on the spaceship is thlys62 years.

(c) The observer on the spaceship moves at a €8 relative to the star and to
Earth, and takes 62 years to get there. Theredoomrding to him, the distance from
Earth to the star is (62 yr) x (0.85 ly / yr) =lgght-years. One could use length
contraction to get the same result.

Problem 2: Unstable particles are produced in a nucleaticam a laboratory. The
particles have an average lifetime of 1.0 ¥%€kconds when at rest. The particles
travel an average distance ahbfrom the point of production before decaying,
according to an observer at rest in the laboratévat is the speed of the particles
relative to the stationary observer?

Solution: The lifetime of the particles is longer in tharfie where they are moving.

The range is therefore given by
fl
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Solve for the speed
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Problem 3: Suppose that at= 0, Bob synchronizes his watch with Alice, and getsa
high-speed train that travels around and aroundtireh at a speed of SK@/h. If the
train never stops, how long would Bob need to stayt before his watch was off from
Alice's by one second, due to time dilation? Egpirthe answer in years.

Solution: Alice sees Bob's clock run slower; the amourttroé that passes for Alice is

bigger by a factor of
1 1

=t B V' 1 = ((500Fm R (1000m /km ) [(3600s/1))2/(3 x 10%m/s)?

= 14107 =107

Thus Alice's watch accumulates an extra*s&conds or so for every second Bob is on
the train. Thus it would take ¥Geconds for the watches to be off by a second. In
years, this is

10% s /(365d /yr x 864008 /d) = 320, 000yrs!

Thus the high-speed train is not a very practioa tmachine. It would take over
300,000 years to generate a time difference otarakbetween someone on board the
train and an inertial observer.

2. Velocity addition

Problem 4: Alice observes a particle moving with a spee@.8¢ in thex direction,
while Bob observes the same particle moving wisipeed of 0.6in thex direction.
How fast is Bob moving relative to Alice?

Solution: Letv be the speed of Bob relative to Alisg,be the speed of the particle
relative to Bob, anda be the speed of the particle relative to Alicdefd, by the
velocity addition equation,
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We knowv, andvg, and need to solve for
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Bob is thus moving at a speed of ©rBlative to Alice.

Problem 5: An observer sees two spaceshfpandB, coming towards him from
opposite directions with an equal speed. If tleavoof shipA sees shiB approaching
shipA at a speed of Oc9what is the speed of the two spaceships relativieeto
observer?

Solution: Letv= 0.9 be the speed & relative toA. Letva be the speed of the
observer relative tA andvs be the speed of the observer relativB.tdSince the two
ships are moving at the same speed relative toldkerver, but in opposite directions,
= -va. Then, the velocity addition formula gives
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Both sides of the equation conta) so we should solve for it:
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The plus sign would give a speed faster thakVe must use the minus sign:
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e 0.9

The ships are moving with a speed of OG&Hfative to the observer.



3. Lorentz transformation and 4-vectors

Problem 6: Bob is moving in the direction at a speed of @.8lative to Alice. He
detects two simultaneous explosions=atd. One explosion happens at position
(X, ¥, 2 = (1Ckm, 0, 0), while the other happensaty z) = (2 x 10km, 0, 10 km).

(a) According to Alice, the explosions are notw@itaneous. How much time passes
between them? Use the Lorentz transformatiomib the result.

(b) What is the distance between the explosionsrdaty to Bob? According to Alice?

Solution: According to Bob, both explosions happemh=at0, so their coordinate 4-
vectors areés = (ct, X, y, 2) = (0, 1, 0, 0) x 1%m and (0, 2, 0, 1) x £Km.

The separation between the two events is the qoatel of the second event minus
those of the first:AXz = (0, 1, 0, 1) x 1fkm.

(a) Use the Lorentz transformation to find theetiocomponent of the separation
according to Alice, which gives the separation leswthe events in time according to
her. Relative to Bob, Alice moves in the negakrection with5= 0.8, so
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= 1.33 x 10%m = Aty

1.33 % 10%m
Aty = - M _ 4445
3 % 1[|"f.'ffi'....-' &

Therefore according to Alice, the events occur 4debnds apart.

(b) According to Bob, the spatial part of the sapan has components
(1, 0, 1) x 16&km. The distance between the two events is just

d=vVI1Z2+02+12 x 10%:m = 1.41 x 10%km

To find the distance according to Alice, we needddhe Lorentz transformation to find
the space components of the separation accordingrto

m (1““;(!” -+ (.8 x [I) =1.6T % 1““;(!}3-

AX: =AXE =10 AXY = AX] =1 x 10%:m

Thus the spatial part of the separation accordinite is (1.67, 0, 1) x 8m, and the
distance between the two events is

d=v1672+ 02+ 12 x 10%m = 1.95 x 10%%m



Problem 7: Bob is moving in the direction, at a speed of @.Eelative to Alice. He
observes a particle moving in taéirection with a speed of @3

(a) What is the particle's 4-velocity relativeBob?
(b) What is the particle's 4-velocity relativeAlice?
(c) How fast is the particle moving relative taesl?

Solution:
(a) The 4-velocity according to Bob is

1
Up = vgledy) = ———(1.0.0.0.5) ¢ = (1.048.0.0.0.524) ¢

(b) To get the 4-velocity relative to Alice, Lotertiransform. Alice is moving in the

negativex direction relative to Bob witj#= 0.5, so
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Uy =~ (UL + pUL) = — (0 + 0.5 x 1.048) = 0.605¢
V= (Us+0Us) = =5 J
Ui=Ug=0 Ui =U}=0.524c

Thus the 4-velocity according to Alice is
U4 =(1.210.0.605.0.0.524) ¢

(c) The first component of the 4-velocity contaanfactor ofyaccording to Alice, so it

IS easy to solve fora:
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The Doppler effect

Problem 8: A driver gets a ticket for running a red lighthe driver claims that since
he was driving towards the light, the light appdagezen to him due to the Doppler
effect. How fast would the driver have to be gaings story was true? Assume that
red light has a typical wavelength of é&@while green light has a wavelength of
520nm. Express the result as a fraction of the speddlafand in miles per hour.



Solution: If the driver moving towards the light at a fiact of the speed of lighs,
then the frequency of the light is Doppler shiféedfollows:

fl + /i
1= f"v ]
Sincef = ¢/ A, we can alter this expression into a change oelesngth as follows:
f )H. "1—|— 4 650nm
fo \.‘ 1—4 = 520nm =

Finally, solve fors:

1 .'.:IJ ]
% = 1.25" = 1.56 L+ 4 =1.56(1—/)
2,064 = 0,56 A =10.220

The driver would have to be going at 22% of theespaf light. One mile per hour is
approximately 1.&nvh = (1.6kmv/h) (1000n/ km) / (360G / h) = 0.44Vs, so the driver's
speed in miles per hour would be

(0.22 x 3 x 10%m/s)/(0.44(m/s) fmph) = 148 million mph!

Considering the speed required, the story doesuricsvery likely.

Problem 9:

A radar emits microwave radiation with a wavelengit20cm. The microwaves reflect
off an aircraft, which is moving towards the radath a speed of 400vs. In the radar
device, the reflected waves are made to interfétetive outgoing waves; the slight
difference in frequency causes beats, just asoiang waves. What is the beat
frequency?

Solution:
The frequency of the waves relative to the airdeaft

fl + 4 *1 + vfe
fa=to f'—l—f \fl—w‘-
The aircraft reflects the waves at the same frecpenits own reference frame.

Relative to the aircratft, it is the radar thatppeaching with speed Thus the
frequency of the reflected signal relative to taéar is
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The beat frequency is the difference between thgommg and the reflected frequencies
relative to the radar:

fb’rrrr = fH_fi] = f{l (
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Beats are produced at a frequency of 4@f)@ rate that can be easily detected and
measured with electronic equipment. Measuremetiteobeat frequency is a commonly
used way to detect tiny fractional differences lestwvery large frequencies, such as
those that occur in radars.

Wave-particle duality

Problem 10:
A 650nm laser operates at a power of 1.0W. The laser beamproximately
cylindrical, and has a diameter afm.

(a) How many photons per second does the las¢? emi
(b) How many photons are in a cubic centimetaheflaser beam?

Solution:
(a) Each photon has an energy of

(6.6 )= H T s8) 1B/ s
E=nhf= %’ - 665 1; = fl)[tlix Wm/8) _ 306 x 10712
bl ‘m

The energy is emitted at a rate of 1W = 1 J/shemtumber of photons per second is

= d = 3.27 x 10851
3.06 % 10-19.] :

i)

N

(b) The photons are emitted through an &earr?, wherer is the radius of the beam.
Over a timedt, N = ®y 4t photons are emitted; these photons move a disthacet
down the length of the beam. The photons emitted timeAt thus occupy a
cylindrical volume of

V = mrieAt
The number of photons per volume of the beam is thu
N  dyAt Py 3.27 % 108571
e e S sl =139 x 10%m ™
V mrieAt  arie w(05em)H(3 x 10/ s)

There are 1.39 x £@hotons per cubic centimeter of the beam.



Problem 11:

When ultraviolet light with a wavelength of 3@ is incident on a metal surface,
electrons are emitted via the photoelectric effddte electrons are stopped by a
retarding potential of 1.2 volts.

(a) What is the work function of this metal?
(b) What is the longest wavelength of light thamn @ject electrons from this metal?

Solution:
(a) The electrons have an energy of 1.2eV, whigephotons have an energy of
hc/ A= 4.14eV. The difference is the work function of thetal: = 2.94eV.

(b) In order to eject electrons, the photons rhase an energy of at least 2.94eV.
SinceE=hc/ A, A= hc/E=422m. Light with a wavelength longer than 422 will
not eject any electrons, as the photons don't eagagh energy to overcome the
binding energy of the electrons to the metal.

Problem 12:
An electron and a proton both have a kinetic enefdyd' eV.

(a) What are the speeds of the electron and thteng?
(b) What are the wavelengths of the electron aedototon?

Solution:

(a) For the electron, the rest enengy? = 0.511MeV, while for the protomc? =
938MeV. In each case, this is much bigger tharkthetic energy, so the particles are
essentially non-relativistic, and we can use tlassital relationship between kinetic
energy and speed to find the speed:

" 1 L 12
-EH e Ef}i‘.t'd = E[H}.r'd]rl—j
1 [2Ek [ 2% 10%V
— =4 =4/ - = ().198 for the electr
¢~ VmeZ T V5 x105ev or the eleetron
1 ."'I 2 % 10%V - .
- = \‘." 0.38 x 108cV = 0.0046 for the proton

The proton is definitely non-relativistic, as it®wng at only 0.0046 but you might
worry about the electron, which moves at almost 208wspeed of light. You can use
the relativistic energy-velocity relationsHip= mc? + Ex = ymc? instead; the result will
be different by 2% or so, but the classical appration is still very accurate.



(b) The de Broglie wavelengths are related tanleenentum by
2r 2xh  h
}n, = — = =
;I- _|!'-|' J!'.l'
We will calculate the momentum from the energy gshre classical approximation (if
you want better than 2% accuracy, you cankisep?c® + néc’ for the electron instead).
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(4.14 x 107 %eVs)(3 x 10%m /s) . u .
= — —— —— = 1.23 x 10" " for the electron
vV 2(5.11 x 107V ) (10%eV)
(4.14 % 107 %V 8)(3 % 10%m /s
A= l t ) m/s) — 2.87 x 107 % for the proton

V 20938 x 108V)(104V)
You can see that more massive particles have shawtBroglie wavelengths.

Problem 13:
An electron microscope is to resolve features adlsaas 1Gm across. What is the
potential through which the electrons in the micopse must be accelerated?

Solution: We want to achieve a de Broglie wavelength dfOatm or smaller. The
corresponding energy is

P P
2 2mA2 2mceIAE
(414 x 107%eVs)3(3 x 10°m /s)?

2(5.11 x 10%V {10~ %m)?

L

= 0.015eV

An energy of only 15 meV is required.

Problem 14:

A beam of electrons is accelerated through a patesft5000V. The electrons are
incident on a crystal with interatomic spacing dfSdm. What is the angular separation
between adjacent diffraction peaks?

Solution: First we find the wavelength of the electronisTis
e

A= —no = 1.73x 107N
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Now the angle of the first minimum away from thatal minimum is

Jsind = \ g d 1.73 = 10~ Wy
dsint = sinfl = — = :
A 1.5 % 10109

= 0.1153

H=6.62°

M ass, ener gy and momentum

Problem 15:
How much energy would it take to accelerate antelado a speed of 0.89 What
about 0.996? Express the answers in electron-volts.

Solution:
The kinetic energy i« = (1 - y)mc® Forv= 0.9,

! 7.08
—_—— = |.
v 1—0.992

o~ —

i

Therefore Ex = 6.08n¢? = 3.11 MeV.

Forv=0.99%, y= 22.4, andEx = 21.4nc? = 10.9 MeV.

Problem 16:

An electron has a kinetic energy of 1MeV relatiwétice. It moves in the positive

direction.

(a) Bob is moving in the negatixalirection (opposite to the direction of the elentso
motion) at a speed of @5 What is the kinetic energy of the electron re&ato Bob?

(b) How fast is the electron moving relative tac&l? Relative to Bob? Obtain both
result from the electron's kinetic energy.

(c) Now obtain the speed relative to Bob fromdpeed relative to Alice using
relativistic velocity addition. You should get teame result as in part (b).



Solution:
(a) For this part, we will construct the energymamtum 4-vector of the electron in
Alice's frame, and transform to Bob's frame. Thaeof course other ways to calculate
the energy in Bob's frame For Alice,

Eq4=me 2 4 Ew a=1511MeV

E3 =m?c" +pic® pac= ‘u,,-"fllE::l — (me?)? = 1.595M eV

1 1 ,
Py= = (E4.fac) = —(1.511.1.595.0.0) MeV
i i

To get the energy in Bob's frame, Lorentz transftrenfirst component of the energy-

momentum 4-vector to Bob's frame:
. F . | MeV ‘u‘ V
Ph="2 =5 (P} +pP)) = (15114 0.5 1.595) —— = 2.67—

C ‘ri . hl 1 — [I l.j_. I - - C
Ep = 2.6TMeV

This is the total energy, which includes a restgynef 0.511MeV. Thus the electron's
kinetic energy in Bob's frame is 2.67 - 0.511 5RIEV.

(b) The speed of the electron relative to Alicd &ob can be obtained from the total
energy by using

3] o] o] _1
2 e (L e
E=yme = ——— s = 3
"\Iu". 1 S fl._. I.'r-.—- = _E_'

m2et 'I 0.511MeV
i 1 _ — e
V E? \} 511 MeV

|' ).
- = \l' ([ S1LMeV ):[I.F}SE for Bob

) = (.941 for Alice

2.6TMeV

(c) Using velocity addition, the speed of the til@a relative to Bob is

g+ 0.941¢ + 0.5¢
g = — = — = ).98¢
L +vvyfe 140941005

The discrepancy is very small, and due to roundomge of the numbers in the
calculation.



Problem 17:

A photon with an energy d&,= 25eV collides with an electron at rest, and feected
back in the direction it came from.

(a) What is the 4-momentum of the electron antthefphoton before the collision, in

terms of the photon enerdy and the electron mass? Assume the photon is initially
traveling in thex-direction.

(b) What is the 4-momentum of the electron andoth@ton after the collision? What is
the kinetic energy of the electron after the cahsin eV? Use energy-momentum
conservation, and the mass-energy-momentum retattorthe photon and electron.

Solution:

The amount of algebra in this problem has beendaarbe a bit ridiculous (around 2
pages if done efficiently). In the interest of isavtime typing up 2 pages of algebra, |
will skip this solution. See other problems involy energy-momentum conservation to
see how to go about doing this.

Nuclear and particle physics

Problem 18:
Carbon 14 decays via beta decay.

(a) What isotope does it turn into?

(b) The carbon 14 nucleus has a mass of 14.003241id the nucleus it turns into has a
mass of 14.003074 u. Suppose that the electrothanantineutrino are emitted in such
a way that the nucleus remains at rest. Whath&renergies of the electron and the
antineutrino? How fast is the electron movingddraction of the speed of light)?

Solution:

(a) Beta decay increases the charge of the nubleidy converting a neutron to a
proton, but it leaves the number of nucleons ungidn Thus the product of this
reaction is nitrogen 14 (which is the most commaturally occurring isotope of
nitrogen).

(b) First convert the atomic masses to electrditsvd u = 931.481eV / ¢ so the
energy decreases by 0.156 MeV. But that's thegghamthe atomic rest energy; the
nitrogen actually has an additional electron, waittest energy of 0.511 MeV, so the
decrease in nuclear rest energy is actually 0.1661*1 = 0.667 MeV. By conservation
of energy, this must be equal to the total enefghi@electron and the antineutrino.



Conservation of momentum tells us that since thabeus is at rest both in the initial
state, the total momentum must be zero in the fitak as well. Since the nucleus
remains at rest, the electron and the antineutnomenta must add up to zero. Thus we
have the following equations for the energy and motmm conservation:

E.+FE, =AE=066TMeV

Pe = — P
We can choose theaxis so that the electron moves in the positigaection with
momentum of magnitude, while the neutrino moves in the negatweirection with
momentum of magnitude,. Then the second equation becomes

Pe = Pu
We have 2 equations and 4 unknowns, so we supptaherquations with energy-
momentum relationships for the electron and thmeuatrino. The antineutrino is nearly
massless, while the electron has nrass

E,, :ff,,.f' Erj :I}?r'jﬁ—”j_jr'_l
Plug this into the equation for the conservatiomoimentum:

frr"r"' = f:;r"'

E? —m** = E;
Plug this into the equation for conservation ofrggeas follows:
Er + Er) = ._\lE
E, =AFE—FE,

E?=AE*+ E? —2E.AF = E? —m**
AFE (2E, — AE) = m**

1 et 1 /(0.511)° . .
g = = - ). T ey = I.l.-:z. el
E, 3( E—|—AE) _)( 0667 + .66 )Uﬂ 0.529 Mel

This is the total energy of the electron; the kimenhergy is 0.529 - 0.511MeV = 18 keV

The energy of the antineutrino is
E,=AFE —E, =066TMeV —0.520MeV = 0.138MeV = 138keV

This is all kinetic energy, since the neutrino hasnass and thus no rest energy.

The electron's speed can be calculated from theygias follows
, e’
.E — ':r'.l'.i'-l"-l"_. — f—f
v 1= fes
/ 24
i .' =i -
- = \."' 1 — 7= = (.259
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Problem 19:

Plutonium-239 has a half-life of approximately 200¢/ears. It decays to uranium-235
via alpha decay. The isotope mass of Pu-239 i9082956 u, the isotope mass of
uranium-235 is 235.0439299 u, and that of the afj#réicle is 4.002602 u.

(a) How many decays per second spontaneously atdukilogram of Pu-239?
(b) How much energy per second is released ihedle decays?

(c) The heat radiated away by an object with teatpeeT is given byP = gA(T*Ty"),
whereT is the temperature of the object in kelvifisis the ambient temperatuigjs
Stefan-Boltzmann constantr € 5.67 x 1FWm?K*) andA is the surface area of the
object. Plutonium has a density of 19.82g°crtf the 1kg piece of plutonium is shaped
like a sphere and all the heat from the decayadsmted away, what is the temperature
of the surface of the sphere? Assume the ameemgdrature is 273K.

Solution:

(a) The number of atoms inkdy of plutonium-239 is equal to

N — (1000g)(6.022 x 10%mol ™)
o 239.054/mol

(Instead of using the method with Avogadro's nunfien chemistry, we could simply

convert the atomic mass unit to kilograms, andddivikg by that mass).

oo 24
= 2.02 x 107 atoms

The chance that each atom will decay in 1 secoad({24000y x 365 d/y x 86400 s/d),
so the number of decays per second is
2.52 x 10%

r= _ = 3.33 x 10271
24000 - 365 - 864008

(b) First, we need to compute the energy relepsedecay. Here, the amount of
electrons is the same for the helium plus the uraras for the plutonium, since we are
not changing the charge of the isotope. Thus iffereince in the total isotope mass is
entirely due to change of mass of the nuclei, motlse the neutral atoms have different
numbers of electrons. This gives an amount ofggnezieased
AFE = (239.052156u — 235.0439209u — 4.002602u) ¢® x 931.46( MeV /%) fu =
=5.24MeV = (5.24MeV )(1.602 x 1072 T /MeV) = 8.39 x 107

The energy released by all the collisions per segives the power produced by the
radioactive decay:
P=vE=(333x10%s1)(839 x 1075]) = 2.80W



(c) Akilogram of plutonium would have a volumeldf00 g / 19.82 g/ctre 50.5¢cm.
For a sphere, we have |
R 3V P
Vi==-ah" &= = 2.29em
3 T
A =47 1® = 66.0cm? = 6.60 x 10™%m?

Solve for the surface temperature of the piecdubpium:
P=cA(T"-T,)

P
+_pa_ L
2.80W
=zt h)= (273K )| =
g (rr_.'-l +T“) ([J.GT 1S —2K 16,00 x 1052 T 213K )
— 338K = 65°C

The piece of plutonium would thus be quite warrmadt uncomfortably hot to the
touch.

Problem 20:
Suppose that a collision causes a quark to begelerating away from a proton. Two
particles are formed as a result, one of whichnswron. What is the other particle?

Solution:
A proton can be turned into a neutron by takingaowtjuark and replacing it with
guark. Thus, it was aquark that got kicked out of the proton, and simekound
guarks do not exist, dquark-antiquark pair formed to allow it to escaféed quark
remained with the former proton, turning it intaeutron, while thel antiquark went
with theu quark to form a charged pion. Taeuark has a charge of +2/3, while the
antiquark has a charge of +1/3; the other partials has charge +1 and is a positively
charged pions7:
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Proton Neutron



Problem 21.:

A neutral pion consists of a quark-aniquark paithlof the same type. A charged pion
consists of a pair of different types (for exampie,quark and down antiquark). Pions
are lighter than any particles apart from photetegtrons and neutrinos.

(a) How does a neutral pion decay? How does myelgion decay? Draw Feynman
diagrams for the decay processes.

(b) Which would you predict would have a longé&etime, a charged pion or a neutral
pion? Why?

Solution:

(a) Since the quark and antiquark in the neuial pre of the same type, they can
annihilate to form a photon orZaboson. The photon @boson can then form an
electron-positron pair; the Z boson can form eidneelectron-positron pair or a
neutrino-antineutrino pair. However, the probaypitf the photon being an intermediate
Is much higher, since the photon is massless, wid& boson has a huge mass. The
dominant reaction from this kind of process is thus

u =

u

.
Another, approximately equally likely, possibilitythe formation of two photons in the
final state (note that you can't have just one @hat the final state because that would
violate energy-momentum conservation):

u ,\f\f\f\J

¥

=
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For a charged pion, let's consider a negativelyggthone, consisting of a down quark
and an up antiquark. The positively charged pielnaves the same way, except with
particles and antiparticles reversed. Now, thg @mhg that the down quark and up
antiquark can combine to form is the Béson. The Wboson must in turn produce an
electron and an electron antineutrino, since akkopossible products would be heavier
than the pion. This decay process looks like this:
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(b) A neutral pion decays primarily via photonsiieh cost no energy to produce, being
massless. The charged pion must go through tlyerwassive W boson as an
intermediate state. The mass of the W boson eaBefbrms an energy barrier to the
pion's decay, and slows it down greatly. Thisifact confirmed experimentally: the
charged pions have a lifetime of 2.6 xX®k0while the neutral pion has a much shorter
lifetime of 8.4 x 10"s. The neutral pion decays about 300 million tirfaeser!

Problem 22:
In some grand unified theories, the proton canyleda a pair of particles, with a very
long lifetime.

(a) Based on conservation of charge, energy, mameand spin, what kind of
particles could a proton decay into?

(b) Pick a possible pair of particles. If thetprois at rest before it decays, what will be
the energy of each of these particles after thaydec

Solution:

(a) The pair of particles must have a half-integm@n, a net charge of +1, and a
combined mass less than that of a proton.

Pions have integer spin (0 or 1) while leptons Haaléinteger spin. We must have one
of each to give a half-integer spin. Electronspngj neutrinos and their antiparticles, as
well as charged and neutral pions, are lighter tharproton, and are thus candidates for
proton decay products.

One possibility is a positron or anti-muon, anceatral pion. Another possibility is a
charged pion with charge +1, and a neutrino onaatrino of any flavor. Note that the
grand unified theory doesn't necessarily respats@wation of lepton number, just the
conservation laws given above.

(b) The proton's mash|c?, goes to the energy of the particles in the fstate. The
momenta of the two particles are equal and oppasitiee they must add up to zero
(which is the proton's initial momentum). For pae massesy andm, the



conservation of energy and momentum, as well asrikegy-momentum relationships,
give the following equations:

Ey -I—JE‘gz_-"‘L-fr'2 P+ =10
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El = ;:jr'j + mje 5 = par
We have four equations and four unknowns.

Plugging the energy-momentum relationships intcseond equation (conservation of
momentum) gives

T ]
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y ]
Ef —mict = B —m3c’

Plugging this into the first equation (conservatidrenergy) gives
EE = [1_-"1-_'!fr'j — El) ? = Ef -I—J'Hir'_1 o 1'1‘4‘..11:r'_1
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E, = M2t — m.gr"i + J'H.fr"1
2Me=
B = M2t + rf}.gr"l — m.fr-4
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Now we need to pick a process and look up someaaasSuppose the proton decays
into a positron and a neutral pion. The mass®epibsitron is 0.511MeV, same as that
of an electron. The mass of the neutral pion sy @a look up on Wikipedia, and is
equal to 135 MeV. The mass of the proton is 93& MEhe energy of each product is
therefore

_ 0382 — 1352 +0.5112

E., = RREE — 459 MeV

0382 — (.5112 + 1352 ,

E. = AT oMy
2 % 938

The kinetic energy of the positron and the piothestotal energy minus the rest energy.
The kinetic energy of the electron is thereforewl#®b8 MeV, while that of the pion is
344 MeV.



