
Homework Set 4
Due Wednesday, 07/20

Problem 1:  A room has two open windows on the same wall, at a distance of 4 meters 
apart.  A loud car horn is sounded outside.  An observer along the opposite wall, 15 
meters away, can hear the sound loudly when he is directly opposite the point between 
the two windows, but if he moves to the point directly across from one of the windows, 
the sound becomes much quieter, growing louder again as the observer moves farther 
away from the center.  What is the main frequency of the car horn?

Solution:  The point directly across from the window is the first point where destructive 
interference occurs.  The path length difference there is 1/2λ.  

From the diagram above, the path lengths from the two windows are x1 = 15m and 
x2 = (62+152)1/2m = 16.16m.  The path length difference is half the wavelength, and is 
equal to 1.16m.  Thus the wavelength is 2.32m.  This corresponds to a frequency of
f = v / λ = 330m/s / 2.32m = 142hz.



Problem 2:  Laser light of wavelength l = 520nm is incident on a CD at an angle of 30 
degrees to the normal, as shown in the diagram.  The reflected light is projected onto a 
screen.  The diffraction fringes are found to lie in directions 1.2 degrees apart.  What is 
the separation between the tracks on the CD?  Hint:  the laser light arriving at the 
different tracks already has a path length difference from the laser, in addition to the path 
length difference to the screen.

Solution:  The CD has a bunch of parallel tracks that reflect light and act as a diffraction 
grating.  Since the diffraction grating produces the same diffraction angles as a double 
slit with the same spacing, let us look at a pair of nearby tracks and see what is the path 
length difference for the light reflected off these two tracks:

Suppose the light comes in at an angle of θ = 30o, and we look at a point on the screen in 
the direction φ = θ + δ.  Note that we use this angle because some light will be 
diffracted away by an angle δ from the central maximum given by the law of reflection. 
Beam 1 accumulates an additional path length ∆x1 = d sin(θ+δ) after reflection, while 
beam 2 has an additional path length ∆x2 = d sin θ prior to reflection.  The path length 
difference is ∆x1 - ∆x2 = d(sin(θ+δ) - sin θ) = nλ for constructive interference.  The 
n = 1 diffraction maximum is separated from the central maximum by δ = 1.2o, so



Problem 3:  In the year 2265, United Earth spaceships are equipped with 100GW laser 
cannons, firing infra-red laser beams with a wavelength of 1.0µm.  The laser beams have 
a diameter of 25cm when they emerge from the laser cannon.  Aliens from Alpha 
Centauri are invading.  The alien spaceships have shields that can withstand infra-red 
light intensities of up to 1GW / m2.  What is the effective range of the laser cannons 
against the alien spaceships?

Solution:
The laser beam from the cannon spreads due to diffraction.  Its power is 100GW, so the 
maximum cross-sectional area of the beam should be 100m2 to give an intensity of 1 
GW/m2.  Since A = πr2, this gives a beam radius of r = 5.64m.

This beam radius is reached at the effective range R.  The effective range is related to the 
diffraction angle θ by  θ = r / R (this is true because θ  is a small angle).  But the 
diffraction angle is θ = λ / a, where λ is the wavelength of light and a is the aperture 
size of the beam.  Therefore,

The effective range of this laser cannon against the alien spaceships is about 1400 
kilometers.



Problem 4:  A thin film with thickness d = 400nm has an index of refraction n = 1.42. 
Light is incident on the film at an angle of 30 degrees with respect to the normal.  What 
wavelengths of visible light in the reflection are enhanced by constructive interference?

Solution:
The two light paths shown in the diagram undergo different phase shifts due to reflection 
from different interfaces, and different distances traveled.  A close-up of the diagram 
looks like this:

Beam 1 undergoes a phase change of π during reflection, and travels an additional 
distance ∆x1 = 2a sin θ1 = 2d tan θ2 sin θ1.  The total phase change due to these things is



Beam 2 doesn't undergo a phase change during reflection, and travels an additional
distance ∆x2 = 2h = 2d / cos θ2.  Since the wavelength in the medium is λ = λ0 / n, beam 
2 undergoes a phase change of

For constructive interference, the difference in phase between the two beams should be a 
multiple of 2π :

We know d, n and θ1 and can calculate θ2 from Snell's law:

Using this in our equation gives

For values of j starting from zero, we get wavelengths of 2126nm, 708nm, 425nm, 
303nm, etc.  Constructive interference will amplify these wavelengths in the reflection 
and suppress the ones in between.  Of these wavelengths, only 708nm and 425nm are in 
the visible range.



Problem 5:
Non-polarized light with intensity I0 travels in the direction of the z-axis.  The light is 
incident on a polarizing filter 1 oriented in the x-direction.  The light then passes through 
another filter 2, oriented at angle φ to the x-axis, and then filter 3, oriented in the 
y-direction.  The intensity of the emerging light is measured to be 1/10 of I0.  What is the 
angle φ?  If there are multiple distinct possible angles, find all of them.

Solution:  After the light passes through the first filter, it becomes polarized in the x 
direction, and its intensity becomes I0 / 2.  After the light passes through the second 
filter, it is polarized in the direction of the second filter, and its intensity is (I0 / 2) cos2φ. 
The third filter is at an angle π / 2 - φ  to the second, so after the light passes through the 
third filter, it is polarized in the y direction, and its intensity is 
I1 = (I0 / 2) cos2φ cos2(π / 2 - φ) = (I0 / 2) cos2φ sin2φ  = (I0 / 2) cos2φ (1 - cos2φ ).   From 
the problem statement,



Problem 6:
A microscope has a length of 10.0cm.  The focal length of the eyepiece is 0.80cm.  The 
microscope has objectives that give 300X, 900X and 1800X magnification.  

(a)  What is the focal length of each objective?

(b)  The microscope slide is illuminated with a 5-watt light when the lowest-
magnification objective is used.   If we want the same level of image illumination at the 
highest magnification, what power light should we use?

Solution:  We need to relate the focal length of the objective to the magnification.  The 
magnification given on the objectives is with the microscope adjusted so that the final 
image is at infinity, compared to a standard eye with a near point of 25cm, for objects 
that produce a small image angle.   The ray diagram for a microscope looks like this:

First, relate the angle subtended by the image θ  to the focal length of the objective fO. 
For a very small object, which produces a small angle, we have

The reference angle θ0 is that produced by the object at the near point without using a 
microscope.  Thus, θ0 = h / pNP.  The angular magnification is

Solving this for the focal length of the objective and using the parameters given for the 
microscope gives



Now we just use the given magnifications in this equation.  Using m = 300 gives 
fO = 0.868cm.  For m = 900, we get fO = 0.309cm, and for m = 1800, fO = 0.157cm.

For part (b), we realize that for the highest magnification, the image appears to be 6 
times bigger than for the lowest magnification, so the area in view is 36 times smaller 
than at the lowest magnification.  We want this area to receive as much light as the field 
of view did at the lowest magnification, so we must increase the power of the light by a 
factor of 36 to make up for a smaller area.  Therefore, we need 180 watts.

Problem 7:
Suppose that a near-sighted person has a near point of 10.5cm and a far point of 56.0cm. 
His lens is 1.90cm from the retina.

(a)  What lens power should this person use if he is to wear contact lenses?

(b)  What lens power should he use if he is to use glasses, which sit 1.50cm from the 
cornea?

(c)  If this person's vision is corrected with lenses, what is his new near point?

(d)  Between what limits does the power of this person's lens-cornea combination vary?

Solution:
(a)  When the person wearing contact lenses looks at objects far away, he should see a 
virtual image at the far point, so that the eyes can focus on the image properly.  The 
focal length of the lens is given by f = 1 / (1/p+1/q) = 1 / (0 + 1 / -56.0cm)  = -56.0cm. 
The power of the lens is one over the focal length in meters:  P = 1 / -0.56m = -1.79D.

(b)  With glasses, the image should now be 56.0 - 1.5 = 54.5cm from the front of the 
glasses, so the focal length should be -54.5cm.  The power is 1 / -0.545m = -1.83D.

(c)  The answer to this is the distance at which an object forms an image that falls on the 
eye's near point (q = -pNP).  This gives p  = 1 / (-1/56cm + 1/10.5cm) = 12.9cm

(d)  When the person is focused on an object at the far point (56.0cm), the light is 
focused on the retina, 1.9cm behind the cornea and lens.  The focal length of the lens-
cornea combination is thus f = 1 / (1/56.0cm + 1/1.9cm) = 1.838cm.  The corresponding 
power is 54.4D.

When the person is focused on an object at a near point (10.5cm), the focal length 
becomes f = 1 / (1/10.5cm + 1/1.9cm) = 1.609cm.  The power is 62.2D.  The power of 
the lens-cornea combination thus varies from 54.4 to 62.2 diopters.



Problem 8: 
We want to build a telescope that is designed to directly observe planets orbiting other 
stars.  The light of the star would normally overwhelm the much less intense reflected 
light from the planet, but if the telescope can separate the images of the star and the 
planet, the light of the star can be blocked out, allowing the image of the planet to be 
detected.

(a)  We want to be able to detect planets in Earth-like orbits around stars up to 80 light-
years away.  If the telescope looks for wavelengths of light close to 600nm, what is the 
minimum required diameter of the telescope mirror?  Assume that we will put this 
telescope in space, so the resolution is limited by the diffraction limit, not by the 
atmosphere.

(b)  If we aim the same telescope at the Moon, 400,000 kilometers away, what is the 
minimum size of the features on the Moon's surface that can be resolved?

(c)  Images with this telescope are obtained with a CCD camera, with no eyepiece.  The 
pixels on the CCD are 6.8µm across.  We do not want the telescope's resolution to be 
limited by that of the camera.  What is the minimum focal length of the telescope's 
mirror?

Solution:
(a)  The Earth is about 150 million km from the Sun, and we are looking for planets at a 
similar distance from their star.  The largest angular separation between the star and the 
planet is θ = r / R, where r is the radius of the orbit and R is the distance from the star-
planet system to the telescope.  We want to at least be able to detect the planet when it is 
at maximum angular separation from the star.

A light-year is the distance light travels in a year; we can calculate this to be 
(365 d/yr)(86400 s/d)(3 x 105 km/s) = 9.46 x 1012 km.  At 80 years, the maximum angle 
between the planet and the star as viewed from Earth is

The diffraction limit must be smaller than this angle:



The telescope mirror must thus be at least 3 meters across to distinguish the star and the 
planet.  However, note that at this aperture size, the images of the star and the planet will 
still overlap considerably, so it will be difficult to separate the light.  Also, the planet will 
only be detectable when it is at the point in its orbit that places it at the largest possible 
angle from the star as seen from Earth.  Increasing the aperture size well above the 
minimum limit would help alleviate these difficulties.  6 meters would be much better 
than the minimum value of 3 meters.

(b)  The telescope can resolve features 2 x 10-7 radians across (or even smaller, if the 
bigger mirror is used).  This corresponds to a distance on the Moon of

(c)  In order to not limit the telescope's resolution, the camera must be able to distinguish 
angles at the diffraction limit.  The size of the image at the diffraction limit on the image 
plane is h' = f θd.  We want h' to be at least 6.8µm, so that the CCD can resolve it. 
Therefore,

The focal length of the telescope's mirror must be more than 34 meters to allow the 
camera to fully resolve the image.



Problem 9: (Extra Credit)
This problem asks you to analyze a key experiment that established that the speed of 
light is the same for all observers, and for light coming from all directions.

Suppose that Einstein was wrong, and the speed of light did in fact depend on the 
observer.  Suppose that there is a specific reference frame in which the speed of light is 
the same in all directions.  If an observer moves with respect to that frame, then if not 
for Einstein's relativity, he would see light coming towards him from the direction he's 
moving in go faster than c, while light catching up from behind would go slower than c.

Now suppose that the observer carries a Michelson interferometer with him.  The 
interferometer has arms 25 meters long, and uses 500nm light.  The observer begins with 
arm 1 of the interferometer aligned in the direction of the observer's motion, and slowly 
rotates the apparatus until arm 2 points in the direction of his motion:

If the speed of light depends on the direction light is coming from, then as the 
interferometer is rotated, fringes would go by.  Suppose the observer does the 
experiment in January.  No fringes go by.  The observer concludes that in his current 
frame, the speed of light is the same in all directions.

Now the observer repeats this experiment six months later, when the Earth's orbital 
motion is carrying him in the opposite direction and he is thus moving relative to his 
previous frame.  If the speed of light depended on the observer's motion, how many 
fringes would go by as the interferometer was rotated?



Solution:  
Note that the physics in the solution are completely wrong.  The ether model has been 
disproved (in part by this experiment), but to get the predictions for the experiment, we 
will pretend that it is correct.  If it was correct, then the speed of light would be the same 
in all directions relative to the ether, but not for observers moving through the ether.

Consider first the light traveling from the beam splitter to the end of arm 1, with arm 1 
pointing in the direction of the observer's motion.  The light travels at speed c relative to 
the ether, but since the observer is moving at speed v in the direction of arm 1, the light 
relative to the observer moves at speed c - v.  The time it takes the light to get to the end 
of arm 1 is therefore t = d / (c-v), and the number of oscillations the wave undergoes is 
 ft = fd / (c-v).

Now the light comes back.  The observer is now moving head-on towards the light, so 
he should see the light moving at speed c+v.  The amount of time it takes the light to get 
back to the beam splitter is therefore t = d / (c+v), and the number of oscillations the 
wave goes through is ft = fd / (c+v).

Thus the wave traveling up and down arm 1 undergoes a total number of oscillations 

The wave traveling up and down arm 2 travels with the same speed in each direction. 
The amount of time it takes is 2d / c, and the number of oscillations is undergoes is

The difference in the number of oscillations between the first and the second arm is

When the two arms are exchanged, this difference is reversed, so the number of fringes 
that go by is twice that amount:

Finally, the Earth's orbital speed can be determined from the fact that the Earth takes one 
year to complete a whole revolution around the sun.  The speed is thus 
v = 2πR / T = 30km/s.  If we assume that the first experiment yielded negative results 
because the Earth happened to be at rest relative to the ether, then six months later, it 



will be moving in the opposite direction, and thus will move at about 60km/s relative to 
the ether.  Using this for the speed v above, we calculate the number of fringes:

Therefore, 8 fringes would go by.

Problem 10: (Extra Credit)
It is said that individuals with particularly good eyesight can see the phases of Venus 
(that is, they can see that Venus is not a fully illuminated disk, but rather a portion of a 
disk, just as the Moon is when it is not full).  Human pupil size can be up to 9mm when 
fully dark-adapted, the distance from the eye to the retina can be up to 22mm, and the 
distance between individual rods on the retina is about 3µm.  Is it possible that an 
individual with eyes like this, and with perfect vision, can see the phase of Venus when 
Venus is positioned relative to the Earth as shown in the diagram?  Consider both the 
diffraction limit and the resolution limit of the retina.

Solution:  First, we will determine the angular diameter of Venus as seen from the 
Earth, and then we will see if the eye can resolve this as more than a single point, subject 
to the diffraction limit and the resolution limit.

The distance to Venus in the diagram forms the hypotenuse of the right triangle.  If aE is 
the distance of the Earth from the Sun, and aV is the distance of Venus from the Sun, the 
distance of Venus from Earth in the diagram is equal to

The diameter of Venus is 12100km, so the angle subtended by Venus is



Now we will determine the diffraction limit and the resolution limit of the eye 
mentioned.  The diffraction limit depends on the wavelength, but the smallest angles can 
be seen in the shortest wavelengths.  The human eye can clearly see down to about 
400nm, so the diffraction limit is approximately

Venus passes the diffraction limit, but barely.  The size of the image of Venus on the 
retina is

This is a lot smaller than the separation between the rods, and in fact even smaller than 
the separation between the cones, which can be as small as 2 µm.  The separation 
between light-sensitive cells doesn't vary much from individual to individual.  Thus, the 
eye cannot distinguish Venus as more than a point, due to the resolution limit of the 
retina.  Stories about individuals who can see the phases of Venus are most likely false, 
unless there are people with eyes 4cm in diameter.


