Lecture 6 Notes: 07 /06
The Doppler effect

The Doppler effect is a shift in frequency thatufesfrom motion of the source or the
observer (or both).

Consider first the case of a stationary sourceaambving observer. L&t be the
frequency of the source, afidbe the frequency measured by the observer.
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Observer approaching the source
crosses more wavefronts per second

The source creates a bunch of sound waves with fants separated by a wavelength
A. If the observer were stationary, the number afavfronts passing him every second
would be equal to the frequency of the soufge,c/ A. However, if the observer is
moving towards the source with spaetie will pass more wavefronts per second:

fo= (ctv)/ A. Dividing the frequency of the observer by thiathe@ source, we get
fo/fs=(ctv)/c, or
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If the observer moves away from the source, rétaar towards it, the sign ofis
simply reversed.

Now consider a moving source and a stationary @bseiSuppose the source is moving
towards the observer with speed
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Moving source creates shorter wavelengths
in front of it, longer wavelengths behind.



If the source was stationary, it would emit wavests a distancé apart, but now, over
one period, the source moves a distari¢so the next wave crest is emitted a distance
of only A - vT = A-v/fsfrom the first. The observer therefore sees aalesngth oflo

= A-v/fsand a frequency of

fo=clAo=cl (A-v/fsy). Multiplying both the numerator and the denomanday fs

and using/ fs = ¢, we obtain
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Again, if the source is receding from the obseraéner than approaching, the signvof
is reversed. The rule of thumb is that the fregyencreases if the source and the
observer are moving closer with time, and decreifisles source and the observer are
getting farther and farther away from each other.

Example: Suppose the source is moving towards the obsemieispeedss, and the
observer is simultaneously moving towards the sowith speedo. What is the
frequency measured by the observer, in terms ofahiece frequency?

We can derive the equation for both the sourcetlama@bserver moving by breaking up
the problem into two steps. First, introduce aditamhal observeA, located between
the source&s and the observed, who is stationary with respect to the medium digio
which the sound is propagating:
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The stationary observé&rmeasures the frequency of the moving source to be
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The sound wave passes throdgat this frequency, and continues on the obsedver
ThereforeA can be treated as a stationary source with frexyuien The frequency
measured by the moving obsergers then




Example: Suppose that an active sonar on a stationaryishiged to determine a
receding ship's speed. A sonar ping is emittedfegquency of 14008z, and the echo
returns with a frequency of 139@2. The speed of sound in water is approximately0150
nm/s. How fast is the ship moving away?

Again, this problem is derived by breaking it upisteps. Lels be the sonar
frequencyfe be the echo frequency, afadbe the sonar frequency as measured by the
ship. Then, we have
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Note that the minus sign appears because theshpving away from the source of the
sound. With this notatiomw,is positive and will give the magnitude of the shigpeed.
The ship receives the sonar ping at this frequearay,simply reflects it at the same
frequency. Now the sonar can be treated as thenadrs and the ship as a source with
frequencyfo, moving away from the observer at speed
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Now solve forv:
(c+v)fe=(c—v)fs vifs+ fe)=clfs— fE)

fs—I& (1400 — 1390)h=
= =
fs+ f& (1400 + 1390)h=
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Interference of sound waves

Recall that the variation in pressure (or the @ispment of air molecules from the
equilibrium position) in a traveling sound wavegisen by

ylae. t) = Asin(br — wt + ¢) = Asin(f)
If two sound waves meet, the valueg/dbr each wave are simply added to determine
the resultant wave:

yle.t) =yl t) +ysle.t) = Aysin(fy) + Assin(6y)



Suppose that the sound waves are perfectly in plhielse means that the phases
6, and & are different by an even multiple afand whersin(@) = 1,sin(&) = 1 as
well. In this case, the maximum displacement efdabmbined wave is

Ynazr = -".'11 + -".'13
The amplitudes of the two waves add. This is knageonstructive interference.

Now let the waves be perfectly out of phase, sowuieen one wave is at a maximum,
the other one is at a minimum. This happens whamd & are different by an odd
multiple of 7z In this casey attains a maximum when the wave with the larger
amplitude is positive, and the one with the smallaplitude is negative:

Yazr = |-':'11 - -'"'13

The overall amplitude is reduced. This is knownlestructive interference. If A1 and
A2 are equal, the waves will cancel perfectly.

Suppose we have two sources of sound waves whitthlesrexact same wave form
(same frequency, and the sources are in phasesadthother). In this case, the phase
difference between the two waves at a point away fthe speakers is determined by
the path length differends - L. If the path lengths differ by a multiple of the
wavelengthi, the waves are in phase and constructive interéereccurs. The sound is
louder at these points. If the path lengths diffet, - L, = (n + 1/2)A, the waves are

out of phase and we get destructive interferenue tlle sound is quieter.

Constructive

Source 1 Source 2

Example:

An observer is located directly between two spegKkecated 20 meters apart. The
speakers are in phase with each other, and bo#naiteng a sound with a frequency of
60hz. How far away from the center should the obsemveve to get destructive
interference?



In the center, the observer is 10 meters away &aah speaker, which gives
constructive interference (L L, = 0 =nA, n= 0). If the observer moves a distanxce
from the center towards speaker 2, the distance e speaker is noky = 10 +Xx
meters, and the distance from the other speaker=s10 - x meters.

Thereforel, - L, = 2x. For destructive interference, we want

1
20 = (n‘t + ;) A

The first point of destructive interference occata = 0, orx = 1/4 A. Therefore,
Ly_le _133m/s

T = —
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Thus if the observer moves 1.4 meters from theecdatvards one speaker or the other,
this will be a point of destructive interferencéjere the sound waves from the two
speakers will tend to cancel each other and andditaf the sound will be at a
minimum.

We will revisit interference in more detail, in thentext of electromagnetic waves, later
on in the course.

Beats

Now suppose that two waves with equal amplitddeave slightly different angular
frequenciesu anda. Let us specialize to the powt 0 and assume that the two
waves are in phasetat 0. Then, the value of the wave functiorkat 0 at timet is

y=A [Hiﬂ.[wl?‘.] + -‘*J:H.[{.J..-'g?l.;l]

We have arbitrarily chosen the sign of the arguroétite sine to be positive, to avoid
writing all the minus signs. Now let us changealales to the average frequency, and
the difference in frequency between the two waves:

5 [ +{A.a'3;| = W e — W = Aw

Solving fora andar and plugging this into the equation fogives



Finally, use the trigonometric identign(A+B) = sin AcosB + cosA sin B:

y=A {.-u'.u. \(w” - éﬂ.w) J + sin \(w” + %ﬂm) a‘.J }
Aw Aw
iy = _4 l.ﬂif}.fwnﬂ COs (— ) — rfri'."ilr{.a..-‘qj?l.j:'iill (T?L)

) Aw ) Aw
+ sin{wpt) cos | —1 ) + cos(wpt) sin -t

Aw
y = 2_4,..;£;3_fwnijr:r3.ﬂ (T?L)
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Thus there is a fast oscillatioan(ayt), with an amplitude that varies slowly between
zero and?A in time (again, we are assuming that the two feegies are nearly the
same, so thalwis much smaller thaay, and the cosine piece oscillates slowly). The
graph ofy as a function of time looks something like this:
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The blue line indicategt), while the red line indicates the amplltude of diseillations
A cos(4dwt/2). You can see that the sound wave alternates bathigh intensity (the
large bumps in the graph, callbehts) and low intensity (the nodes in between them).
The angular frequency of the modulating cosine tionds Aw/ 2, so its frequency is

11 1
§§|wz —w1| = §|f-_ — f1|

However, note from the graph that there are inti@otbeats for every period of the

cosine function. Thus, theeat frequency (defined as the number of beats per second) is
twice the frequency of the cosine:

fflr-rrl'. = |f3 — fl|

If the two waves have different amplitudes, the kinnge at the nodes won't be zero, but
there will still be high and low-intensity periodkernating at the beat frequency.



Example: An observer is riding in a car that has just egadrfrom a tunnel and is
moving directly away from the cliff at a speed d 6Vs. The car is sounding its horn at
a frequency of 3568z. The observer hears rapid beats due to interderehthe sound

of the horn with the echo from the cliff. Whatlhe beat frequency?

First determine the frequency of the echo. Thascarmoving source, moving away
from the cliff, so the frequency of sound as it\as at the cliffic is

¢ a0l
fo= ——fs = —————fs = 343h=

e+ v 3ol + 6.5

The echo is reflected at the same frequency. Neveliff is acting as a stationary
source, and the car is moving away. The frequehtlye echo as measured by the
observer in the car is

t— ) 331 — 6.5
fo =" - - T” x 343hz = 337Thz
Finally, the beat frequency is
frew = (350 — 337T)hz = 13h=

The observer thus hears 13 beats per second fastnput distinguishable by the
human ear as individual pulses of sound.

Note: The material past this point will be on Miderm 2, not Midterm 1
Section Il: Electromagnetic Waves and Optics

Wave solutions to Maxwell's equations

The dynamics of electric and magnetic fields areegoed by Maxwell's equations. You
don't need to know these equations in detail, ey took something like this:
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These are partial differential equations, the magni which will become clear if one
takes a course in vector calculus. H&endB are the electric and magnetic fielgdgs
the charge density, ardds the current density.



It can be shown (in a different class) that in ewan (o= J = 0) the Maxwell equations
are equivalent to the wave equation. What hapetiat, even though there are no
charges or currents, oscillations in the electaldfinduce oscillations of the magnetic
field, and vice versa. Plane wave solutions te Wave equation satisfy the following:
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Let us consider what this solution means. The liime tells us that the electric field
oscillates like a simple sine wave. The elecieldfa vector, so its amplitude is a vector
as well. The wave “number” is actually a vectart that's not a problem: let us choose
our coordinates so that taexis lies along the direction &f Then,

—

E_: = E};.Hr:rf.[wt — k=)

This is simply an equation for a plane wave progiagan the positivez direction with
wave numbek. Therefore, the direction of thevector is the direction of propagation
of the wave, and is magnitude is equal to the wawaber.

The second line states that the electric fieldisgs perpendicular to the direction of
propagation (so the dot product is zero) and dgikeselationship between the angular
frequency and the wave number. Siage kc for all waves, this means that the speed
of propagation of electromagnetic waves is given by

= ! = 3.00 x l[lﬁr}}._..-"..ﬂ
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This speed is the same for all electromagnetic sjaegardless of frequency or
amplitude. It also seems to be independent obaemwer, since we haven't specified
what the speed is relative to! For a string amdséund, that's obvious; the speed of
waves on a string is given relative to the strisglf, and the speed of sound waves is
given relative to the air. But for EM waves, thex@o string or air, so if we take
Maxwell's equations seriously, the speed of lighthe same relative to all observers.

This seems strange: you'd think if you were mowahgpeed towards the source of
electromagnetic waves, you should see them cormingrtls you at speedt c. But
this doesn't happen; electromagnetic waves alwayseratc. We will resolve this
apparent paradox when we briefly talk about speeiativity later in the course.



Finally, the last line states that the magnetifi2is perpendicular both to the electric
field E and to the direction of propagation of the waits.amplitude is proportional to
that of the electric field, and it oscillates ingsle with the electric field at exactly the
same frequency.

The direction of the electric fiel is called theolarization vector. Let us choose our
coordinates so that the polarization vector liehapositivex direction. Then, the
electric field is given by

—

E = rEysin{wt — kz)

The magnetic field is

B = M(‘ X f::) = !}%Hifl[{wt —kz)

At time as specific timg a snapshot of the solution looks something like: t
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The electromagnetic spectrum

Our eyes can perceive electromagnetic waves witlel@agths between about 390 and
750nm as light. The color of the light depends on tle@length: red light has long
wavelengths, while violet light has short waveldrsgt
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EM waves beyond the red edge of the visible spatgtftom 790nmto 300m (by
convention) are known asfrared radiation. Beyond infrared radiation reicrowave
radiation (wavelength of up to 1 meter), and beyond thahdiso.




Going to the other side of the spectrum, waves beybe violet edge of the visible
spectrum are known astraviolet radiation, spanning wavelengths from 10 to 396.
Going to even shorter wavelengths we h&wey radiation (0.10 to 10nm).
Electromagnetic waves with wavelengths shorter thhafhm are known ag radiation
(gamma radiation, or gamma rays).

Example: What is the visible range in terms of frequency?

Frequency is related tbbyf= c/ A. For the violet edge of the visible spectrum

't-i X 1“% i) -: )
) X “1m

For the red edge,

3 % 10%m /s
f=l T 40 x 10MH 2 = 400T H>
750 % 107%m

The visible spectrum therefore includes frequenbetgieen 400 and 770 terahertz.

Types of electromagnetic radiation

In sunlight, and in most other natural sourcesfr&adiation, there are waves of all
kinds of polarizations, phases, wavelengths, stperimposed together (remember that
we can add all these waves due to the superpositioaiple). There are various types
of radiation where these parameters are restricted:

Monochromatic radiation contains only a narrow range of frequencies. [igig of a
laser is monochromatic; the light passed througharaow color filter is also
approximately monochromatic.

Coherent radiation consists of electromagnetic waves that are glhase with each
other. Note that this is only possible if the waage also monochromatic (if they
weren't, they would quickly develop different phajselLasers produce coherent light;
color filters do not.

Polarized radiation consists of EM waves that all have the same dmedf the
polarization vector. So we could have radiaticat th polarized in thg direction, or in
they direction, or in any other direction perpendicutathe direction of travel.
Circularly polarized radiation refers to a very specific superpositiorx@ndy -
polarized waves that are out of phase with eacérotRolarized radiation is produced
by passing light through@olarization filter, which is essentially a material that only
allows electric fields pointing in a particular @ition to pass through.



