Lecture5 Notes. 07/05
Energy and intensity of sound waves

Sound waves carry energy, just like waves on agtidb. This energy comes in several
types: potential energy due to the compressidhefaterial, kinetic energy due to the
movement of the material's particles, and alsanthéenergy, since when the material is
compressed it heats up a bit. Just like for wawea string, the energy carried by sound
waves increases with amplitude and frequency; heweve won't derive the precise
relationship here.

Let us say that a material with a sound wave tragehrough it has an acoustic energy
densityoe. On a string, this had units of energy per lengthd / m. However, a sound
wave travels through a three-dimensional, rathem #none-dimensional, medium, so the
units are now energy per volume, or J*/ m

Consider an plane of aréaperpendicular to the direction of propagationhaf wave:
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Assume thad is sufficiently small that the amplitude and dtrec of travel of the wave
is uniform throughout it. Then, the rate at whastergy is transported across the surface
A (called theenergy flux acrossA) is:
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The energy flux has units of (J Arx (M) x (m/s) =J /s =W, as expected (since the
flux is a rate at which energy is transported).

Theintensity is defined as energy flux per unit area:
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The intensity has units of W /rand measures how loud (intense) the sound is.



Sound comes in a huge range of intensities. Famele, the human ear can detect
sounds with an intensity of about*®/n? (this is called théhreshold of hearing).
There are, of course, inaudible sounds that havehrawer intensities than this. The
ear can handle, at least for a short while, sowitisan intensity up to about 1 W#m
Sounds with intensities much above 1 Whare very uncomfortable to be around
without earplugs, and can quickly cause hearingadgn

Standing close to a jet engine or a firing artyllprece can expose one to sound
intensities in excess of thousands of W/ r8uch sound waves can instantly rupture the
eardrum unless appropriate ear protection is ugeeh{ng the mouth also helps, as the
sound wave can then reach both the inside andutsele of the eardrum at the same
time, possibly preventing it from being ruptured.)

Since we want to be able to describe sounds whitdr th intensity by more than 16
orders of magnitude, it is useful to introduce galathmic scale. Thitensity level is
given in decibels, and defined as follows:
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Thus, a sound on the threshold of hearing hastansity level of about O decibels.
Sounds too quiet to be audible have negative iittelevels. The loudest sounds that
one can comfortably handle have intensity levelarotind 120 decibels, while
extremely loud sound sources, such as jet engioelsgts or explosions, are capable of
producing intensity levels of 150 - 170 decibel€oen more.

Note that when the intensity goes up by a factdi®fthe intensity level increases by 10
decibels. Thus, a 60-decibel sound is 10 timesnmmiense than a 50-decibel sound,
and 100 times more intense than a 40-decibel sound.

Example: 25 identical generators are located in one lapgee. With only one
generator running, the intensity level of the nmhin this space is 90 decibels. What
Is the intensity level when all generators are gn

The intensity becomes 25 times as large, so tleasity level increases by
10 logo(25) = 14 decibels. Thus, the intensity level vath25 generators running is
104 decibels.



Spherical waves

To an observer located sufficiently far away froto@alized source of sound, such as a
loudspeaker, the source looks approximately libeiat source. If there is nothing that
gets in the way or absorbs the sound, a point ecemats sound igpherical waves:
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This diagram is a cross-section centered on theesourhe circles show the locations of
the wave peaks at a particular snapshot attjmefact, they are not circles but
spherical surfaces, but they appear as circlesossesection. The arrows show the
direction of propagation of the wave at variouspobn the sphere.

The total acoustic energy flux emitted by the speakthe power of the speaker (this is,
of course, less than the amount of power the speles from the power source, since
the speaker is not 100% efficient at convertingehergy input into sound). By
spherical symmetry, the acoustic energy must flakoumly through any spherical
surface centered on the speaker.

Also, by conservation of energy, if there is noapson of sound, the flux through any
closed surface that contains the speaker mustued emthe power of the speaker (since
all the energy emitted by the speaker must leaxesadhis surface). Choosing a
spherical surface of radiusso that the intensity is uniform everywhere omshrface,

we obtain the intensity at radius
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Thus, the intensity is inversely proportional te thistance squared. If the intensity at a
distancer, is known to bd,, then the intensity at a different distam¢ées given by
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Example:
A sound source has a power of 10 milliwatts. Wahe intensity level of the sound
10 meters away? 1 kilometer away?

10 meters away, the intensity level is

0.010W
4w (10m)

I(10m) = = T7.96 x 107°W/m?

The intensity is

7.96 x 107°W /m?
10~ 2W /im?

[ = (10db)logy, ( ) = 69 b

One kilometer away is 100 times as far. Thereftbre intensity drops by a factor of
100 = 10". This means that intensity level decreases hyetibels (remember that it
decreases by 10 each time the intensity decregse$aotor of 10). The intensity at a
distance of 1 km is therefore 29 db.

Plane waves

Far away from the source and in a small enouglonegine wave fronts in a spherical
wave are approximately planar and parallel to edbér:

W

The planes on the right and the circles on theolete again represent the locations of
maximum pressure, and the arrows show the direcfigmopagation of the wave.
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If we choosex to be the direction of propagation of the wavéhis region, the
displacement of the pressure is independegtanidz, but depends oxiandt:

AP =ylx.t) = Asin(ka — wt)

This is exactly the form of the wave we found fousd traveling in one dimension
(for example, down a pipe).



Standing wavesin a pipe

Suppose we have a pipe of finite length, and wakhbw what kind of sound waves
can exist inside it.

In general, sound waves inside a pipe can be brogento longitudinal modes (waves
that depend on the coordinatalong the length of the pipe), radial modes (thbse
depend on the distancdrom the pipe's axis) and azimuthal modes (thbaedepend
on the anglepalong the pipe's circumference). For the purpo$dsis class, we will
only deal with longitudinal modes. For a suffidigmarrow pipe, these will give the
dominant contribution to the sound inside the pipe.

Consider first a pipe of lengththat is closed on both ends. This means thadith@an't
move back and forth right at the ends, since tlseaesolid surface there. This situation
iIs completely analogous to a string that is tiedmlat both ends. By analogy with the
string, the displacement of air molecules alongpipe as a function of the positians
given by a standing wave that is zero on both ends:
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The first three modes at maximum displacement() look like this:
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The frequency associated with thte mode is
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The fundamental frequency occurs for 1, since then = 0 mode doesn't exist (for
n= 0, displacement is zero everywhere):



Now consider a pipe that is open on one end arskdlon the other. It can be shown
that the displacement of the air molecules is maxrmat the open end (we won't go into
the proof here, due to lack of time). et O be the closed end: using the standing
wavey(x,t) = A sin(kx)cos(wt) satisfies the boundary conditig(x=0) = 0, sincesin(0)

= 0. The constraint ok comes from the condition that the displacementagimized
atx= L. This s true if
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The standing wave solutions for a pipe open atemtkeare thus given by
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The first three modes at 0 look like this:

Y

I e
e
|

¥; II

The frequency associated with thte mode is
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In this case, tha = 0 mode exists, and gives the following fundamermdjfiency:
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Finally, consider a pipe that is open botlx at0 andx = L. In this case, the
displacement is maximized on both sides. We shasdda different standing wave to
describe this situationy(x,t) = A cos(kx) cos(wt) is a standing-wave solution of the
wave equation that always has a maximum=a0, and thus satisfies the boundary
condition on the left. All that remains is the bdary condition on the right, which is
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The constraint ok is thus the same as for a pipe closed on both endsstring that is
tied down on both ends. Tine= 0 mode does not exist, since that would correspond t
a constant displacement throughout the pipe, wisihdescribes a movement of air in
one side and out the other, not an oscillating wthexeforen = 1, 2, 3... The standing-
wave solutions for a pipe open on both ends are
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The first three modes &t 0 look like this:
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The frequency of theth mode and the fundamental frequency are the sarf@ a pipe
closed on both ends:



Example: A bottle has a length of 20 centimeters. Whaheslowest frequency
produced when air blows across the top of thedgdttEstimate the fundamental
frequency if this bottle is placed in an 1 atm eha&n (molecular weight 131 amu).

The bottle can be approximated as a pipe open ernd and closed on another. The
fundamental frequency in air under standard tentpexand pressure is therefore
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In xenon, the speed of sound is different. Thigrimarily because the density of xenon
is higher; the bulk modulus of xenon at a giverspuee is in fact also slightly different
from that of air, since xenon is a monoatomic ghgenair is primarily diatomic, but
this effect is relatively small. We know from baghermodynamics of gases that at a
given temperature and pressure, the density isoptiopal to the molecular weight of
the gas. Airis primarily diatomic nitrogen, so wel take its molecular weight to be
approximately 2 x 14 = 28. Therefore,
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Recall that the speed of sound in a gas is inwe@elportional to the square root of the
density, provided that the bulk modulus is aboatgame (we will assume that it is).
Therefore, the speed of sound in xenon is lower:
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Since the fundamental frequency is proportiondgh&speed of sound, it will also be

lower by the same factor:
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The frequency is therefore much lower in this heagas. If a gas lighter than air, such
as helium, was used, the frequency would instedudddeer. This is why someone's
voice sounds high-pitched if one first takes a thred helium.



Example:

A whistle can be approximately modeled as a pignam both ends. It has a length of
6 centimeters. One of Prof. Brian Keating's graelstudents has this whistle at the
South Pole during the Antarctic winter. The tenapere is -70C, and the air pressure is
1.0 atm. What is the whistle's fundamental fregy@n

The density of air, and therefore the speed of dpigdifferent at such a low
temperature. Recall from thermodynamics that gresidy of a gas is inversely
proportional to the absolute temperature. Theegfibre density at -7Q is
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The speed of sound is

Coe 0 331m/ s -
ot = = ——— = 280m/s
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Finally, assuming that the whistle behaves as pa ppen on both ends, the
fundamental frequency of the whistle is
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