
Lecture 5 Notes:  07 / 05

Energy and intensity of sound waves

Sound waves carry energy, just like waves on a string do.  This energy comes in several 
types:  potential energy due to the compression of the material, kinetic energy due to the 
movement of the material's particles, and also thermal energy, since when the material is 
compressed it heats up a bit.  Just like for waves on a string, the energy carried by sound 
waves increases with amplitude and frequency; however, we won't derive the precise 
relationship here.

Let us say that a material with a sound wave traveling through it has an acoustic energy 
density ρE.  On a string, this had units of energy per length, or J / m.  However, a sound 
wave travels through a three-dimensional, rather than a one-dimensional, medium, so the 
units are now energy per volume, or J / m3.

Consider an plane of area A, perpendicular to the direction of propagation of the wave:  

Assume that A is sufficiently small that the amplitude and direction of travel of the wave 
is uniform throughout it.  Then, the rate at which energy is transported across the surface 
A (called the energy flux across A) is:

The energy flux has units of (J / m3) x (m2) x (m / s) = J / s = W, as expected (since the 
flux is a rate at which energy is transported).

The intensity is defined as energy flux per unit area:

The intensity has units of W / m2, and measures how loud (intense) the sound is.



Sound comes in a huge range of intensities.  For example, the human ear can detect 
sounds with an intensity of about 10-12 W/m2 (this is called the threshold of hearing). 
There are, of course, inaudible sounds that have much lower intensities than this.  The 
ear can handle, at least for a short while, sounds with an intensity up to about 1 W/m2. 
Sounds with intensities much above 1 W/m2 are very uncomfortable to be around 
without earplugs, and can quickly cause hearing damage.

Standing close to a jet engine or a firing artillery piece can expose one to sound 
intensities in excess of thousands of W / m2.  Such sound waves can instantly rupture the 
eardrum unless appropriate ear protection is used (opening the mouth also helps, as the 
sound wave can then reach both the inside and the outside of the eardrum at the same 
time, possibly preventing it from being ruptured.)

Since we want to be able to describe sounds which differ in intensity by more than 16 
orders of magnitude, it is useful to introduce a logarithmic scale.  The intensity level is 
given in decibels, and defined as follows:

Thus, a sound on the threshold of hearing has an intensity level of about 0 decibels. 
Sounds too quiet to be audible have negative intensity levels.  The loudest sounds that 
one can comfortably handle have intensity levels of around 120 decibels, while 
extremely loud sound sources, such as jet engines, rockets or explosions, are capable of 
producing intensity levels of 150 - 170 decibels or even more.

Note that when the intensity goes up by a factor of 10, the intensity level increases by 10 
decibels.  Thus, a 60-decibel sound is 10 times more intense than a 50-decibel sound, 
and 100 times more intense than a 40-decibel sound.

Example:  25 identical generators are located in one large space.  With only one 
generator running, the intensity level of the noise within this space is 90 decibels.  What 
is the intensity level when all generators are running?

The intensity becomes 25 times as large, so the intensity level increases by 
10 log10(25) = 14 decibels.  Thus, the intensity level with all 25 generators running is 
104 decibels.



Spherical waves

To an observer located sufficiently far away from a localized source of sound, such as a 
loudspeaker, the source looks approximately like a point source.  If there is nothing that 
gets in the way or absorbs the sound, a point source emits sound in spherical waves:

This diagram is a cross-section centered on the source.  The circles show the locations of 
the wave peaks at a particular snapshot at time t; in fact, they are not circles but 
spherical surfaces, but they appear as circles in cross-section.  The arrows show the 
direction of propagation of the wave at various points on the sphere.

The total acoustic energy flux emitted by the speaker is the power of the speaker (this is, 
of course, less than the amount of power the speaker draws from the power source, since 
the speaker is not 100% efficient at converting the energy input into sound).  By 
spherical symmetry, the acoustic energy must flow uniformly through any spherical 
surface centered on the speaker.  

Also, by conservation of energy, if there is no absorption of sound, the flux through any 
closed surface that contains the speaker must be equal to the power of the speaker (since 
all the energy emitted by the speaker must leave across this surface).  Choosing a 
spherical surface of radius r, so that the intensity is uniform everywhere on the surface, 
we obtain the intensity at radius r:

Thus, the intensity is inversely proportional to the distance squared.  If the intensity at a 
distance r0 is known to be I0, then the intensity at a different distance r1 is given by



Example:
A sound source has a power of 10 milliwatts.  What is the intensity level of the sound
10 meters away?  1 kilometer away?

10 meters away, the intensity level is

The intensity is

One kilometer away is 100 times as far.  Therefore, the intensity drops by a factor of
1002 = 104.  This means that intensity level decreases by 40 decibels (remember that it 
decreases by 10 each time the intensity decreases by a factor of 10).  The intensity at a 
distance of 1 km is therefore 29 db.

Plane waves

Far away from the source and in a small enough region, the wave fronts in a spherical 
wave are approximately planar and parallel to each other:

The planes on the right and the circles on the left once again represent the locations of 
maximum pressure, and the arrows show the direction of propagation of the wave.

If we choose x to be the direction of propagation of the wave in this region, the 
displacement of the pressure is independent of y and z, but depends on x and t:

This is exactly the form of the wave we found for sound traveling in one dimension 
(for example, down a pipe).  



Standing waves in a pipe

Suppose we have a pipe of finite length, and want to know what kind of sound waves 
can exist inside it.  

In general, sound waves inside a pipe can be broken up into longitudinal modes (waves 
that depend on the coordinate x along the length of the pipe), radial modes (those that 
depend on the distance r from the pipe's axis) and azimuthal modes (those that depend 
on the angle φ along the pipe's circumference).  For the purposes of this class, we will 
only deal with longitudinal modes.  For a sufficiently narrow pipe, these will give the 
dominant contribution to the sound inside the pipe.

Consider first a pipe of length L that is closed on both ends.  This means that the air can't 
move back and forth right at the ends, since there is a solid surface there.  This situation 
is completely analogous to a string that is tied down at both ends.  By analogy with the 
string, the displacement of air molecules along the pipe as a function of the position x is 
given by a standing wave that is zero on both ends:

The first three modes at maximum displacement (t = 0) look like this:

The frequency associated with the nth mode is

The fundamental frequency occurs for n = 1, since the n = 0 mode doesn't exist (for 
n = 0, displacement is zero everywhere):



Now consider a pipe that is open on one end and closed on the other.  It can be shown 
that the displacement of the air molecules is maximum at the open end (we won't go into 
the proof here, due to lack of time).  Let x = 0 be the closed end:  using the standing 
wave y(x,t) = A sin(kx)cos(ω t) satisfies the boundary condition y(x=0) = 0, since sin(0) 
= 0.  The constraint on k comes from the condition that the displacement is maximized 
at x = L.  This is true if

The standing wave solutions for a pipe open at one end are thus given by

The first three modes at t = 0 look like this:

The frequency associated with the nth mode is

In this case, the n = 0 mode exists, and gives the following fundamental frequency:



Finally, consider a pipe that is open both at x = 0 and x = L.  In this case, the 
displacement is maximized on both sides.  We should use a different standing wave to 
describe this situation:  y(x,t) = A cos(kx) cos(ω t) is a standing-wave solution of the 
wave equation that always has a maximum at x = 0, and thus satisfies the boundary 
condition on the left.  All that remains is the boundary condition on the right, which is

The constraint on k is thus the same as for a pipe closed on both ends, or a string that is 
tied down on both ends.  The n = 0 mode does not exist, since that would correspond to 
a constant displacement throughout the pipe, which just describes a movement of air in 
one side and out the other, not an oscillating wave; therefore, n = 1, 2, 3...  The standing-
wave solutions for a pipe open on both ends are

The first three modes at t = 0 look like this:

The frequency of the nth mode and the fundamental frequency are the same as for a pipe 
closed on both ends:



Example:  A bottle has a length of 20 centimeters.  What is the lowest frequency 
produced when air blows across the top of the bottle?  Estimate the fundamental 
frequency if this bottle is placed in an 1 atm of xenon (molecular weight 131 amu).

The bottle can be approximated as a pipe open on one end and closed on another.  The 
fundamental frequency in air under standard temperature and pressure is therefore

In xenon, the speed of sound is different.  This is primarily because the density of xenon 
is higher; the bulk modulus of xenon at a given pressure is in fact also slightly different 
from that of air, since xenon is a monoatomic gas while air is primarily diatomic, but 
this effect is relatively small.  We know from basic thermodynamics of gases that at a 
given temperature and pressure, the density is proportional to the molecular weight of 
the gas.  Air is primarily diatomic nitrogen, so we will take its molecular weight to be 
approximately 2 x 14 = 28.  Therefore,

Recall that the speed of sound in a gas is inversely proportional to the square root of the 
density, provided that the bulk modulus is about the same (we will assume that it is). 
Therefore, the speed of sound in xenon is lower:

Since the fundamental frequency is proportional to the speed of sound, it will also be 
lower by the same factor:

The frequency is therefore much lower in this heavier gas.  If a gas lighter than air, such 
as helium, was used, the frequency would instead be higher.  This is why someone's 
voice sounds high-pitched if one first takes a breath of helium.



Example:  
A whistle can be approximately modeled as a pipe open on both ends.  It has a length of 
6 centimeters.  One of Prof. Brian Keating's graduate students has this whistle at the 
South Pole during the Antarctic winter.  The temperature is -70oC, and the air pressure is 
1.0 atm.  What is the whistle's fundamental frequency?

The density of air, and therefore the speed of sound, is different at such a low 
temperature.  Recall from thermodynamics that the density of a gas is inversely 
proportional to the absolute temperature.  Therefore, the density at -70oC is

The speed of sound is

Finally, assuming that the whistle behaves as an pipe open on both ends, the 
fundamental frequency of the whistle is


