
Lecture 4 Notes:  06 / 30

Energy carried by a wave

We want to find the total energy (kinetic and potential) in a sine wave on a string.  A 
small segment of a string at a fixed point x0 behaves as a harmonic oscillator with 
amplitude A and angular frequency ω:

The mass of this segment is equal to m = µ dx, where µ is the mass per unit length of the 
string, and dx is the (small) length of the segment.  What is the energy of this oscillator?

Recall that the total energy of a harmonic oscillator is

We are using capital K for the spring constant to avoid confusion with the wave number 
k.  The spring constant is related to the frequency as follows:

Thus, the energy of the segment of string is equal to

The length of the segment is dx, so the energy per unit length (energy density) is

At what rate is the energy carried by the traveling wave?  Consider a traveling wave of 
finite length L.  At time t = 0, this wave begins to cross from region 1 into region 2. 
After a time t has elapsed, a length of ct will have moved into region 2:



So, the energy in Region 2 is equal to E2 = ρE ct and the energy remaining in Region 1 is 
equal to E1 = ρE (L - ct).  Region 2 therefore gains energy at the rate I = ρE c joules per 
second, while Region 1 loses energy at the same rate.  This rate of energy transport is 
known as the energy flux of the wave.

Plugging in our result for the energy density ρE, the energy flux is

We can also express this quantity in terms of the tension in the string, rather than the 
mass per unit length.  Recall that

Plugging this into our equation for the energy flux, we obtain

Example:  How much energy is transmitted per second by a wave given by the 
following function, assuming that the tension in the string is FT = 100N?

We can read off the amplitude and the angular frequency from the function, and are 
given the tension.  We need to calculate the wave speed.  It is c = ω / k = 30 m/s.  Given 
all this, we can calculate the energy flux:

The wave carries 17.5 watts of power.

Reflection and transmission from an interface

Now suppose that we join together two strings, each with a different mass per unit 
length.  Tension is applied to the combined string, so that the tension force is the same 
everywhere, but because the mass per unit length is different, the wave speed will be 
different between the two segments.  Let the interface be located at x = 0:



Let y1(x,t) be the displacement of the string to the left of the interface, and y2(x,t) be the 
displacement of the string to the right of the interface.  We can conclude a couple of 
things about how these functions must match up at the interface:

1.  y1 and y2 must be continuous at the interface, since the two strings are connected 
together.  This means that y1(0, t) = y2(0, t).

2.  The derivatives of  y1 and y2 with respect to x must also be continuous at the interface. 
The wave equation contains second derivatives with respect to x.  If the derivative is 
discontinuous, then the second derivative is undefined, and the wave equation cannot be 
valid.  Thus, the wave equation demands that dy1/dx(0, t) = dy2/dx(0, t).

3.  If the functions y1 and y2  are sine waves, they must oscillate with a common 
frequency.  If they did not, then at the point x = 0, one side would move faster than the 
other, and even if we started with the two sides being continuous there, they would 
immediately become discontinuous.  The wave numbers will then be different, since k = 
ω / c, and c is different on the two sides.  The wave number on the left is k1 and the one 
on the right is k2.

Suppose that a sine wave is incident from the left with amplitude A.  Then, in region 1, 
there will generally be two sine waves:  an incident wave going to the right, and wave 
reflected from the interface going back to the left.  Thus,

Note that we chose a different sign convention, making all waves depend on -ω t.  This 
is completely equivalent to our previous convention, but will be slightly more 
convenient for this problem.

In region 2, there will only be a right-moving transmitted wave, since there is nothing 
farther to the right for the wave to reflect from, and no sources of waves from the right. 
Therefore, in region 2,



The continuity condition, y1(0, t) = y2(0, t), means that

The continuity of the derivative with respect to x, dy1/dx(0, t) = dy2/dx(0, t), gives us

Plugging in C from the first equation into the second gives the reflected amplitude B:

Using the first equation to determine the transmitted amplitude C gives

We can put these expressions for the reflected and the transmitted amplitudes in terms of 
the mass per unit length of the strings, µ1 and µ2, using the relationship

The result is

Consider a couple of limiting cases.  First, consider the case that the two pieces of the 
string that are tied together are in fact the same, so that µ1 = µ2 = µ  Then,



There is no reflection, and the entire wave is transmitted into region 2 with the same 
amplitude.  This is exactly what we would expect, since the two regions in this case are 
indistinguishable, and there is really no interface for the waves to reflect from.

Now consider the case where the right-hand piece of string is infinitely heavy, 
µ2 >> µ1.  This corresponds to the case of the string end being tied down to an 
immovable object, for example a wall.  In that case,

In this case, the entire wave is reflected and nothing is transmitted, as expected.  The 
amplitude of the reflected wave is minus the amplitude of the incident wave.  This 
means that the wave is inverted.

Finally, consider a case where the right-hand piece of string has zero mass.  In effect, it 
doesn't really exist; this corresponds to the case where the right end of a string is left free 
to slide up and down rather than tied down.  In this case, we have

In this case, the wave is reflected with the same amplitude, upright.  We also get C = 2A: 
this means that the end of the string moves up and down through twice the amplitude of 
the incident wave, but as there is no string beyond the end, in this case C is not the 
amplitude of any transmitted wave.

Sound Waves

Sound waves are longitudinal waves in a material.  A part of the material is compressed, 
then recoils and expands from the increased pressure, pushing on the nearby pieces of 
the material, thus compressing them and propagating the wave.

First, we will establish the existence of such waves and determine their speed.  Consider 
air, or some other medium, in a cylindrical pipe of cross-sectional area A.  Suppose that 
the properties of this material depend only on the distance along the pipe x, not on the 
location relative to the central axis of the pipe.



Consider a short slab of material within the pipe, having a length dx.  If a longitudinal 
wave travels through the pipe, we will expect this piece to move back and forth a little 
bit.  First, let us find the net force on the piece:

The force is pressure times area, so there is a force P(x)A acting from the left, across the 
boundary at x, and a force P(x+dx)A acting from the right, across the boundary at x+dx. 
Newton's Second Law tells us that

The mass of the piece is the material density times the piece's volume:

Plugging this into the equation above, we get

(This derivative is a partial derivative, because P actually depends on time as well as on 
position x, but we are holding time fixed when the derivative is calculated.)

The motion of the system is driven by variations in pressure.  Pressure changes from 
point to point because the volume elements are alternatively compressed and stretched 
out.  Let us now look how this volume element's volume changes with time:

If the speed of the element on the left of our piece is not the same as of the element on 
the right, the length and therefore volume of our piece will change.  We will, however 
assume that the length stays close to dx (this is the case if the amplitude of the 
oscillations is small).  We will let the actual length of the segment be L = (1+φ)dx, 
where φ  is much less than 1.  The rate of change of L is clearly:



We already have an equation for the acceleration of each piece, so to connect the 
equations, differentiate this with respect to t:

Finally, we plug the expression we derived for the acceleration earlier:

This is beginning to look like the wave equation.  All that remains is to relate φ (which is 
a fractional change in length, and therefore in volume, of our element) to the pressure P. 
If you recall the chapter on the elastic properties of materials, the fractional change in 
volume is related to the change in pressure through a quantity known as the bulk 
modulus, defined as minus the change in pressure over the fractional change in volume:

In terms of our variables, the denominator is

As expected, φ is equal to the fractional change in volume.  Now let P = P0 + ∆P, where 
P0 is the ambient pressure (a constant) and ∆P is the change in pressure due to the 
compression (which varies in space and time).  Then, the bulk modulus is

Now we substitute this into our equation



Also, use the following (since P0 is constant):

The result is the wave equation for sound waves traveling in one dimension:

To clean up the notation, let ∆P = y and identify B/ρ as c2, the speed of wave 
propagation squared (since this equation has exactly the same form as that for waves on 
a string, and we have already established that the factor multiplying the second term is 
equal to c2):

We can now calculate the speed of sound in a material, if we know its density and bulk 
modulus.

Examples:  
1.  The bulk modulus of water is 2.1 x 109 Pa.  Its density is 103 kg/m3.  What is the 
speed of sound in water?

2.  The speed of sound in air at 0oC and 1 atm is 331 m/s, and the density of air under 
these conditions is 1.29kg/m3.  What is the bulk modulus of air?

Note that this is fairly close to the atmospheric pressure.  In general, for gases, B is 
approximately equal to the pressure, but slightly different by a numerical factor that 
varies depending on if it is a monoatomic, a diatomic, or some other type of gas.

3.  A sound wave in a material with bulk modulus of 2.0 x 1010 Pa and density of 
5.5 x 103 kg/m3 has a frequency of 300 hz.  What is its wavelength?


