Lecture4 Notes. 06/ 30
Energy carried by a wave

We want to find the total energy (kinetic and ptiedhin a sine wave on a string. A
small segment of a string at a fixed poinbehaves as a harmonic oscillator with
amplitudeA and angular frequenay.

ylag. t) = Asinlkry — wt) = Asin{—wt + @)

The mass of this segment is equainte  dx, whereuis the mass per unit length of the
string, anddx is the (small) length of the segment. What isa¢hergy of this oscillator?

Recall that the total energy of a harmonic osalad
L. 5
E = gh A-

We are using capitd for the spring constant to avoid confusion with Wave number
k. The spring constant is related to the frequeascfollows:
K
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Thus, the energy of the segment of string is etyual
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The length of the segmentds, so the energy per unit length (energy density) is
E 1

pE =T = ;;f.wj_ﬂlj
At what rate is the energy carried by the travelwaye? Consider a traveling wave of
finite lengthL. At timet = 0, this wave begins to cross from region 1 intosad.
After a timet has elapsed, a lengthatfwill have moved into region 2:
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So, the energy in Region 2 is equaEte= o ct and the energy remaining in Region 1 is
equal toE; = oe (L - ct). Region 2 therefore gains energy at the Iratex: ¢ joules per
second, while Region 1 loses energy at the sarae Tdtis rate of energy transport is
known as thenergy flux of the wave.

Plugging in our result for the energy dengitythe energy flux is
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We can also express this quantity in terms oféingion in the string, rather than the
mass per unit length. Recall that
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pw=Ae
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0=, ﬂ so that f= Fﬂ
\.‘ I o
Plugging this into our equation for the energy flwe obtain
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Example: How much energy is transmitted per second by\wewaen by the
following function, assuming that the tension ie #tring isF+ = 100N?

yla.t) = (0.018m)sin[(6.0m ™ ) — (180571 )¢]

We can read off the amplitude and the angular #aqy from the function, and are
given the tension. We need to calculate the wpeed It i = w/ k=30 m/s. Given
all this, we can calculate the energy flux:

_ 1wFr 5 1{180s71)? x 100N

2 ¢ 2 301 /s

I % (0.018m)* = 17.5W

The wave carries 17.5 watts of power.
Reflection and transmission from an interface

Now suppose that we join together two strings, e®itiha different mass per unit
length. Tension is applied to the combined stremthat the tension force is the same
everywhere, but because the mass per unit lengtiffesent, the wave speed will be
different between the two segments. Let the iaterfbe located at= O:
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Letyi(xt) be the displacement of the string to the lefthefinterface, ang(x,t) be the
displacement of the string to the right of theiftee. We can conclude a couple of
things about how these functions must match upeairtterface:

1. y, andy, must be continuous at the interface, since thestwogs are connected
together. This means tha{0, t) = y»(0, t).

2. The derivatives of; andy, with respect tx must also be continuous at the interface.
The wave equation contains second derivatives iggpect tox. If the derivative is
discontinuous, then the second derivative is unééfiand the wave equation cannot be
valid. Thus, the wave equation demands dydtix(0, t) = dy./dx(0, t).

3. If the functions;, andy, are sine waves, they must oscillate with a common
frequency. If they did not, then at the potrst O, one side would move faster than the
other, and even if we started with the two sidesgeontinuous there, they would
immediately become discontinuous. The wave numbgrghen be different, sinck=
w/ ¢, andc s different on the two sides. The wave numbethanleft isk; and the one
on the right isk..

Suppose that a sine wave is incident from then@ft amplitudeA. Then, in region 1,
there will generally be two sine waves: an inctdeave going to the right, and wave
reflected from the interface going back to the. I&fhus,

il t) = Asin( ke = wt) + Bsinl=kir = wt)
Incident Reflected

Note that we chose a different sign convention,intakll waves depend owvt. This
Is completely equivalent to our previous conventiaut will be slightly more
convenient for this problem.

In region 2, there will only be a right-moving temitted wave, since there is nothing
farther to the right for the wave to reflect froamd no sources of waves from the right.
Therefore, in region 2,

yolr. t) = Csinlkoxr — wi)
Transmitted



The continuity conditiony,(0, t) = y»(0, t), means that
Asin{—wt) + Bsin(—wt) = Csin—wt)
A+B=C

The continuity of the derivative with respectdaly:/dx(0, t) = dy./dx(0, t), gives us
k1 Acos(—wt) — kyBeos(—wt) = keCeos(—wt)
;l'j_[_-"'l — B:l = ;fj(q

Plugging inC from the first equation into the second gives tfeected amplitud®:
kilA—B)=k(A+ B) (g — b2 ) A= (k1 +12)B

Using the first equation to determine the transditimplitudeC gives

k1 — ko ki + ka4 — ko A

C=A+B=A A=
N N ky + ks by + ks
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We can put these expressions for the reflectedtattansmitted amplitudes in terms of
the mass per unit length of the stringsand/s, using the relationship
¢ \/Frfp VFr

The result is
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Consider a couple of limiting cases. First, coesitie case that the two pieces of the
string that are tied together are in fact the san¢hay, = 1= 1 Then,
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There is no reflection, and the entire wave isgnaitted into region 2 with the same
amplitude. This is exactly what we would expettcs the two regions in this case are
indistinguishable, and there is really no interféarethe waves to reflect from.

Now consider the case where the right-hand piestriofg is infinitely heavy,
Lb>> (4. This corresponds to the case of the string emagttied down to an
immovable object, for example a wall. In that ¢ase

_Mq__ H2 0 4
/T
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In this case, the entire wave is reflected andingtis transmitted, as expected. The
amplitude of the reflected wave is minus the amghtof the incident wave. This
means that the wave is inverted.

Finally, consider a case where the right-hand peéctring has zero mass. In effect, it
doesn't really exist; this corresponds to the edsere the right end of a string is left free
to slide up and down rather than tied down. Is tase, we have

B = ﬂ& =A
Vi1

In this case, the wave is reflected with the samplitude, upright. We also g€t= 2A:

this means that the end of the string moves updamah through twice the amplitude of

the incident wave, but as there is no string beytbedend, in this cageis not the

amplitude of any transmitted wave.

Sound Waves

Sound waves are longitudinal waves in a mateAgdart of the material is compressed,
then recoils and expands from the increased presgushing on the nearby pieces of
the material, thus compressing them and propag#imgvave.

First, we will establish the existence of such veaaed determine their speed. Consider
air, or some other medium, in a cylindrical pipecadss-sectional aréa Suppose that
the properties of this material depend only ondiséance along the pipg not on the
location relative to the central axis of the pipe.



Consider a short slab of material within the pipeying a lengthix. If a longitudinal
wave travels through the pipe, we will expect thece to move back and forth a little
bit. First, let us find the net force on the ptece

et

¥ xtdx

The force is pressure times area, so there isca R§K)A acting from the left, across the
boundary ak, and a forcd>(x+dx)A acting from the right, across the boundary+adx.
Newton's Second Law tells us that
Fop=—Plr+dr)A + Plx)A = ma
The mass of the piece is the material density titthegiece's volume:
= ,rﬂ-"' = IrJ.-'-l:f;r

Plugging this into the equation above, we get
pAdr o = —A [P[:f' + dir) — P[:f']l]

_lp[:r'-l—:f:r']l — P(x) B 1aFP

i = _ ——_——
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(This derivative is a partial derivative, becatssctually depends on time as well as on
positionx, but we are holding time fixed when the derivaivealculated.)

The motion of the system is driven by variationpiiassure. Pressure changes from
point to point because the volume elements arenali#ely compressed and stretched
out. Let us now look how this volume element'sunaé changes with time:

v(x) v(x+dx)

x  xtdx

If the speed of the element on the left of our @iscnot the same as of the element on
the right, the length and therefore volume of dece will change. We will, however
assume that the length stays closéxt{this is the case if the amplitude of the
oscillations is small). We will let the actual &gh of the segment de= (1+ ¢g)dx,
whereg is much less than 1. The rate of changk isfclearly:
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t_T = :f;riﬁ = v(zx+de) —v(x)
it it

We already have an equation for the acceleratiaaolh piece, so to connect the
equations, differentiate this with respect:to

b _ _
dir (2 =alr+dr) —alr)
3% ch _alx +dr) —alx) . J
f}i‘l: B -Hr;f' a E

Finally, we plug the expression we derived for dlceeleration earlier:

1oFP
I = e

i Ohe
3% ch 1 P
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This is beginning to look like the wave equatidil that remains is to relat@(which is

a fractional change in length, and therefore iun@, of our element) to the pressBre

If you recall the chapter on the elastic propentiesiaterials, the fractional change in

volume is related to the change in pressure threugtnantity known as thHmilk

modulus, defined as minus the change in pressure over élsédnal change in volume:
AP

B=——"—
AVIV

In terms of our variables, the denominator is
AV A(l 4+ ¢)de — Adr
V B Adx

= f_ln')

As expectedgis equal to the fractional change in volume. NeiW = P, + 4P, where
Po is the ambient pressure (a constant) 4Rdls the change in pressure due to the
compression (which varies in space and time). Ttienbulk modulus is

AP AP
B _—— I.'- = ———
i v B

Now we substitute this into our equation
e 19%P
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Also, use the following (sincg, is constant):
PP {2 _ t'}j[_\

| = - xlﬂ'+‘lpj = ] :I
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The result is the wave equation for sound waveslireg in one dimension:
1 P(AP) 1 F(AP)

B o p o da?
O*(AP)  BJAP) _0
> o da? -

To clean up the notation, 18P = y and identifyB/0 asc?, the speed of wave
propagation squared (since this equation has gxhetlsame form as that for waves on
a string, and we have already established thdatiter multiplying the second term is
equal toc?):

iy L%y .'ll B
—— =0 =)=
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We can now calculate the speed of sound in a nagtérwe know its density and bulk
modulus.

Examples.
1. The bulk modulus of water is 2.1 X’ Rha. Its density is 2&g/m?. What is the

speed of sound in water?

I,"B I,'IIZZ.l  10%kg m—1s72 1450m /
= — =y = S/ =
\u‘ i V 103k m—3 P

2. The speed of sound in air &0Gand 1 atm is 331 m/s, and the density of air unde
these conditions is 1.29kgimWhat is the bulk modulus of air?

'B ) | -
" \‘;'f " B = pc® = (1.29kg/m?)(331m/s)* = 8.49 x 10*Pa
I

Note that this is fairly close to the atmosphenesgsure. In general, for gasBss
approximately equal to the pressure, but slighifiecent by a numerical factor that
varies depending on if it is a monoatomic, a diatgmmr some other type of gas.

3. A sound wave in a material with bulk modulugdf x 13° Pa and density of
5.5 x 10 kg/m? has a frequency of 300 hz. What is its wavelehgth
N & vB/p _ 1910m /s
f f 30051

= 6.36m



