
Lecture 3 Notes:  06 / 29

Intro to waves

A wave is some kind of periodic disturbance that can move through a medium (waves on 
a string, sound waves in air, water waves in the ocean) or just through space 
(electromagnetic waves,  matter waves in quantum mechanics).

Waves in a medium propagate by particles pulling and pushing on each other.  These 
waves can carry energy and momentum over long distances, as each particle transmits 
energy to the next, but individual particles move only slightly from the original position.

Waves in a medium can be transverse (a string oscillating up and down, or an ocean 
wave on the surface of the water) or longitudinal (compression of a spring, or a sound 
wave in air):

Waves can have all kinds of different shapes, but a particularly simple form is

Note that the quantity k here has nothing to do with the spring constant (there aren't 
enough letters in all the alphabets of the world for physicists.)  We will call these simple 
waves sine waves (whether they are a sine or a cosine).  Note that a cosine is just a sine 
shifted over by an angle of π/2, so these two solutions are really the same thing.  The 
plus or minus sign corresponds to left- or right-traveling waves, as we will see below.

Here, y(x,t) is the value of the disturbance at position x and time t.  In the case of a wave 
on a string oscillating up and down, it can be the height of a particular point on the 
string.  In the case of a sound wave, it can be the change in the pressure of air at a 
particular place.

The quantity θ = kx±ω t is called the phase of the wave.  The quantity A is the maximum 
displacement attained by the wave, and is known as the amplitude.



Motion of the wave

First, let's see what the wave looks like at a fixed time t.  This is a snapshot of a wave at 
some particular time:

The horizontal axis is the distance (along a string, for example) and the vertical axis is 
the displacement of the wave at each point.  The height of the wave crests is the 
amplitude A.  The peak-to-peak distance is called the wavelength, and is denoted by the 
Greek letter λ.  

When one moves a distance λ, the wave goes through a full cycle.  This means that the 
phase θ changes by 2π.  Since we are holding the time fixed, this means that

The quantity k (again, not to be confused with the spring constant) is known as the wave 
number.  It is equal to the number of radians by which the phase changes per meter, so 
its units are m-1.

Now, let's look at a particular point on the string, at position x, and follow its motion as a 
function of time.  The graph of the displacement y at this point as a function of time 
looks something like this:

The picture looks much the same as the snapshot of the wave at a fixed time, but now 
the horizontal axis is time, not position.  The point moves with simple harmonic motion. 
The amount of time that passes between one instance of the displacement reaching its 
maximum value and the next is known as the period, denoted by T.  The period is the 



amount of time it takes the phase θ  to change by 2π, and since we are holding the 
position x fixed, this means that

Just like with the harmonic oscillator, the quantity ω is known as the angular frequency. 
It is equal to the number of radians by which the phase changes per second.  The angular 
frequency is related to the frequency, which is the number of complete cycles per 
second, as follows:

Now let's see how the wave moves.  Suppose we have a wave crest for some particular 
values of x and t:  x = x0, t = t0.  Now, let us advance the time by a small amount ∆t. 
Clearly, if we choose a new position where the phase remains the same, we will still be 
at the crest of the wave.  Suppose the crest moves by some amount ∆x.  Then, we have

Therefore, the crest moves with a speed c = w / k, either in the positive or the negative 
direction.  This is known as the wave speed or the phase speed.  Note that if we have 
y = Asin(kx + ω t), then the wave is moving in the negative direction (to the left).  If we 
have y = Asin(kx - ω t), then the wave is moving in the positive direction (to the right).

Spectral decomposition and group speed

It turns out that different waves can be added together, provided that their amplitudes are 
sufficiently small.  The resultant combination is a physically possible displacement of 
the string (or another medium).  This is known as the superposition principle.  We can 
build up arbitrarily complicated functions from simple waves.  Symbolically,



Breaking down a function into simple sine and cosine waves is called spectral 
decomposition, and requires solving for the set of constants Ak and Bk.   The technique 
for finding these constants is called Fourier analysis.  This is not difficult to learn, but is 
somewhat beyond the scope of this class; it is usually taught in second or third-year 
physics, engineering and math classes.  

A wave packet is a bunch of sine waves added together to form a localized disturbance 
moving as one unit.  The wave packet doesn't necessarily move at the phase speed. 
Instead, it moves at the group speed, which is given by

I won't give the proof here.  Note that if the speed c does not depend on k, then we have
ω = ck and vg = c.  In other words, if all waves move at speed c regardless of wave 
number, the phase speed is the same as the group speed.  This makes sense, since in that 
case all the waves making up the wave packet move together, carrying the wave packet 
along at the same speed.  However, if c depends on k, then the group speed will be 
different from the phase speed.

Example:
Suppose that the displacement of a string is given by the equation

What is the amplitude, wave number, angular frequency, wavelength, frequency, period 
and wave speed of this wave?  Is the wave moving to the left or to the right?

The amplitude is maximum displacement of the string:  A = 0.025m.  The wave number 
is the factor multiplying x in the argument:  k = 50m-1.  Similarly, the angular frequency 
is ω = 100s-1.  We can now calculate the wavelength, frequency, period and wave speed:

If the time t increases, the position x must increase as well to keep the phase constant. 
Therefore, the wave is moving to the right.



Mechanics of a string

Consider a string held under tension FT.  The string has mass per unit length µ.  If the 
force due to gravity is negligible, then at equilibrium, the string is stretched out in a 
straight line:

Now let the string be deformed slightly from equilibrium.  We will require that the string 
is fairly horizontal at every point; that is, the maximum angle the string makes with the 
horizontal is always small.  The deformed string will look something like this:

To see how this deformation changes with time, let us zoom in on the small segment of 
string enclosed by the box.  Let us also approximate the string in the box by a set of 
arbitrarily short line segments.  In this approximation, the small piece of string looks 
something like this:

The force diagram indicates the forces acting on the middle segment.  Since the angles 
are small (remember that in the diagram, they are exaggerated for clarity), the length of 
each segment L is approximately equal to dx, and the net force is almost vertical.  If the 
angles get too big, then the net force will not be vertical, and the string will oscillate 
back and forth, not just up and down.  We are assuming this doesn't happen.  The net 
force is thus given by the sum of the vertical components of the tension forces:



Now we use Newton's second law:

There is a small clarification that must be made regarding the kind of derivatives we are 
taking:  note that when we compared nearby points on the string, we were looking at a 
snapshot, so in the equation we should make clear that we are holding the time fixed 
when evaluating the x derivatives.  Similarly, the acceleration refers to a single small 
piece of the string, so when we are evaluating the time derivatives, we are holding x 
fixed.  Derivatives with respect to only one coordinate, holding the others constant, are 
partial derivatives, so we should use the partial derivative notation.  Also, we will put 
everything on the left side of the equation, obtaining the wave equation for the string:

Sine wave solutions

Now let's see if our sine wave solution, y(x,t) = A sin(kx ± ω t), satisfies the wave 
equation.  First, take the derivatives:

Plug this into the wave equation:

The phase speed and the group speed are

Thus, on a string, the group speed is the same as the phase speed.  Wave packets move at 
the same speed as individual sine waves.



Since FT/µ = c2, we can rewrite the wave equation as follows:

This is how the wave equation is usually written.  In this form, it is true for a number of 
different systems, not just for waves on a string.

Example:
In an example above, we had a sine wave on a string described by the function

We can now ask an additional question about this system.  Suppose that the string is held 
under tension of 2.0N.  What is the mass per unit length of this string?

First, we calculate the wave speed:

Now, we use the relationship between the wave speed, the tension and the mass per unit 
length:

The wave equation and superposition principle

We can now prove that the superposition principle holds for waves on a string.  A 
mathematical way to state the superposition principle is that if two functions, g and h, 
are solutions of the wave equation, then any combination of these functions, y = Ag + 
Bh, where A and B are constants, is also a solution.  This allows us to add multiple sine 
waves together to form more complicated solutions.

To prove the superposition principle, assume that g and h are solutions, and write down 
the wave equation for the combined wave, y = Ag + Bh:



In the last step, we have used the given fact that g and h each satisfy the wave equation. 
Therefore, y = Ag + Bh satisfies the wave equation, and the superposition principle 
holds.

Standing Waves

So far, we have considered traveling waves, which moved either to the left or to the right 
with a wave speed c.  There is another kind of waves, which do not move, but oscillate 
in place.  These are called standing waves.  

To construct a standing wave, add a left-moving wave to a right-moving wave.  The two 
component waves have identical amplitudes A / 2 as well as identical wave numbers and 
frequencies:

Now use the trigonometric identities:

This gives the following expression for the wave function:

Consider the wave function at t = 0.  In that case, cos(ωt) = 1, and the wave function is 
simply a sine curve with amplitude A,  y(x,t) = A sin(kx).  As the time advances, the 
cosine becomes smaller than 1, then becomes negative, and finally reaches a value of -1 
before turning back.  This causes the amplitude of the sine curve to oscillate, but the 
wave doesn't move left or right.  The wave therefore oscillates as follows:

The points at the edges and in the center, where the string does not move, are called 
nodes.  The peaks of the wave, where the string moves through the greatest distance, are 
called the antinodes.



Standing waves on a string with fixed ends

Suppose we have a string of length L, which has its ends tied down so that they cannot 
move.  Since standing waves possess nodes that do not move, it stands to reason that 
they can describe the oscillations on such a string, provided that a node is located at each 
end of the string.

Let us place one end of the string at x = 0 and the other end at x = L.  Then, our wave 
must satisfy the conditions y(0, t) = 0 and y(L, t) = 0.  These are called boundary 
conditions, since they proscribe the behavior of the string at its boundaries.  Using the 
standing wave solution above:

Since sin 0 = 0, the first equation is automatically satisfied for our choice of standing 
wave solution.  The second equation gives

Here, n is any positive integer (negative numbers just change the sign of the solution, so 
they do not really yield any independent solutions, and if n = 0, then the wave function 
is simply zero everywhere.)  Our set of solutions, satisfying the wave equation as well as 
the boundary conditions, is therefore given by the following, for any choice of a positive 
integer n:

These solutions are called the normal modes of the string.  

The angular frequency, frequency and period of a normal mode are given by the 
following:



Taking the amplitude to be 1 cm and the length of the string to be 1m, the first normal 
mode has n = 1 and looks like this (the two curves show the extremes of the string's 
oscillations):

The scale on both axes is in meters, and the vertical scale is exaggerated.  

Suppose the string is under tension of 50N and has a mass per unit length of 25g/m.  The 
wave speed is then given by 

The frequency of oscillations of the first normal mode (called the fundamental  
frequency or the first harmonic) is then equal to

The second normal mode has n = 2, and looks like this:



The frequency of the second normal mode is called the second harmonic and is equal to

The third normal mode has n = 3 and looks like this:

Its frequency is

Spectral decomposition on a string with fixed ends

Any possible displacement of a string with fixed ends can be expressed in terms of the 
normal modes.  The only caveat is that the factor that oscillates in time can be 
proportional to a sine as well as a cosine.  Any possible configuration of an oscillating 
string with ends tied down at x=0 and x=L can be written as follows:

As with the case of traveling waves, the set of coefficients An and Bn are determined 
from the initial displacement and speed of every point on the string through the 
techniques of Fourier analysis.


