Lecture 3 Notes: 06/ 29
I ntro to waves

A wave is some kind of periodic disturbance that geve through a medium (waves on
a string, sound waves in air, water waves in tleang or just through space
(electromagnetic waves, matter waves in quantucharacs).

Waves in a medium propagate by particles pullindy@mshing on each other. These
waves can carry energy and momentum over longmaista as each particle transmits
energy to the next, but individual particles mowyclightly from the original position.

Waves in a medium can be transverse (a stringlaseg up and down, or an ocean
wave on the surface of the water) or longitudicahgpression of a spring, or a sound
wave in air):
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Transverse wave Longitudinal wave

Waves can have all kinds of different shapes, pdrécularly simple form is
ylr.t) = Asin(kx £ wt) or ylo.t) = Acos(kr £ wt)

Note that the quantity here has nothing to do with the spring constd@ré aren't
enough letters in all the alphabets of the worldploysicists.) We will call these simple
wavessine waves (whether they are a sine or a cosine). Notedlwatsine is just a sine
shifted over by an angle @f2, so these two solutions are really the samegjthirne

plus or minus sign corresponds to left- or riglatr&ling waves, as we will see below.

Here,y(x,t) is the value of the disturbance at positkaand timet. In the case of a wave
on a string oscillating up and down, it can behtbmght of a particular point on the
string. In the case of a sound wave, it can beliamge in the pressure of air at a
particular place.

The quantityd = kxtwt is called thephase of the wave. The quantifyis the maximum
displacement attained by the wave, and is knowheamplitude.



M otion of the wave

First, let's see what the wave looks like at adikenet. This is a snapshot of a wave at
some particular time:
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The horizontal axis is the distance (along a strfiogexample) and the vertical axis is
the displacement of the wave at each point. Thghhef the wave crests is the
amplitudeA. The peak-to-peak distance is calledwlagelength, and is denoted by the
Greek letter/.

When one moves a distangethe wave goes through a full cycle. This me&as the
phasefdchanges by & Since we are holding the time fixed, this metiias
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The quantityk (again, not to be confused with the spring corisiarknown as thavave
number. It is equal to the number of radians by which thage changes per meter, so

its units are M.

Now, let's look at a particular point on the striagpositiorx, and follow its motion as a
function of time. The graph of the displacemeat this point as a function of time
looks something like this:
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The picture looks much the same as the snapshioe atave at a fixed time, but now
the horizontal axis is time, not position. Themtonoves with simple harmonic motion.
The amount of time that passes between one instdribe displacement reaching its
maximum value and the next is known aspaeod, denoted byl. The period is the




amount of time it takes the pha8eto change by 7z and since we are holding the
positionx fixed, this means that
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Just like with the harmonic oscillator, the quantitis known as thangular frequency.
It is equal to the number of radians by which thage changes per second. The angular
frequency is related to tHeequency, which is the number of complete cycles per
second, as follows:
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Now let's see how the wave moves. Suppose wedaa/e crest for some particular
values ofx andt: x = X, t = to. Now, let us advance the time by a small amdint
Clearly, if we choose a new position where the phasiains the same, we will still be
at the crest of the wave. Suppose the crest nipvesme amourfix. Then, we have

= ka £+ wt = constant

L'il"ﬂ + wiy = L'[;f'{. + l;f';l + wity + l”

EAx + wAt =10
J;-" . :F{.:_.f' =
At kT

Therefore, the crest moves with a speedw / k,either in the positive or the negative
direction. This is known as tilveave speed or thephase speed. Note that if we have
y = Asin(kx +wt), then the wave is moving in the negative direcf{torthe left). If we
havey = Asin(kx -wt), then the wave is moving in the positive directftmthe right).

Spectral decomposition and group speed

It turns out that different waves can be addedttmgeprovided that their amplitudes are
sufficiently small. The resultant combination iplaysically possible displacement of
the string (or another medium). This is knownleesstiperposition principle. We can
build up arbitrarily complicated functions from gha waves. Symbolically,
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where wp = ok



Breaking down a function into simple sine and cesiraves is calledoectral
decomposition, and requires solving for the set of consta#atandB,. The technique
for finding these constants is callEdurier analysis. This is not difficult to learn, but is
somewhat beyond the scope of this class; it isllysti@aight in second or third-year
physics, engineering and math classes.

A wave packet is a bunch of sine waves added together to forocalized disturbance
moving as one unit. The wave packet doesn't naggssiove at the phase speed.
Instead, it moves at tlggoup speed, which is given by
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| won't give the proof here. Note that if the sppeeloes not depend dnthen we have
w=ckandvy = c. In other words, if all waves move at speaédgardless of wave
number, the phase speed is the same as the greeg. sphis makes sense, since in that
case all the waves making up the wave packet namether, carrying the wave packet
along at the same speed. Howevet,depends oR, then the group speed will be
different from the phase speed.

Example:
Suppose that the displacement of a string is goyethe equation

(. t) = (0.025m)cos|(50m ™ e — (100571 )¢

What is the amplitude, wave number, angular frequenavelength, frequency, period
and wave speed of this wave? Is the wave movinigetdeft or to the right?

The amplitude is maximum displacement of the striag- 0.025m. The wave number
is the factor multiplying in the argumentk = 50n*. Similarly, the angular frequency
is w= 100s". We can now calculate the wavelength, frequepesipd and wave speed:

A= =0.126m f=

T'=—= =0.0628z o=
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If the timet increases, the positioomust increase as well to keep the phase constant.
Therefore, the wave is moving to the right.



M echanics of a string

Consider a string held under tensfen The string has mass per unit lengthif the
force due to gravity is negligible, then at equiliim, the string is stretched out in a

straight line:
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Now let the string be deformed slightly from eduilum. We will require that the string
is fairly horizontal at every point; that is, th@xmmum angle the string makes with the
horizontal is always small. The deformed string ok something like this:
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To see how this deformation changes with timeyisezoom in on the small segment of
string enclosed by the box. Let us also approentia string in the box by a set of

arbitrarily short line segments. In this approxiima, the small piece of string looks
something like this:
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The force diagram indicates the forces acting emtiddle segment. Since the angles
are small (remember that in the diagram, they saggerated for clarity), the length of
each segmerit is approximately equal tix, and the net force is almost vertical. If the
angles get too big, then the net force will not/beical, and the string will oscillate
back and forth, not just up and down. We are assyithis doesn't happen. The net
force is thus given by the sum of the vertical comgnts of the tension forces:
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Now we use Newton's second law:

ma = (p deja = Fyp ( dy (r + dr) — “r—'r;[;r']l)
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There is a small clarification that must be madgarding the kind of derivatives we are
taking: note that when we compared nearby pointhe string, we were looking at a
snapshot, so in the equation we should make dieamte are holding the time fixed
when evaluating the derivatives. Similarly, the acceleration referatsingle small
piece of the string, so when we are evaluatingithe derivatives, we are holding
fixed. Derivatives with respect to only one cooate, holding the others constant, are
partial derivatives, so we should use the pargaivadtive notation. Also, we will put
everything on the left side of the equation, obtajrthe wave equation for the string:
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Sine wave solutions

Now let's see if our sine wave solutigiix,t) = A sin(kx &wt), satisfies the wave
equation. First, take the derivatives:
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— = —w? Asin(kzx Twt) — = — 12 Asin{ka + wt)
ot= i

Plug this into the wave equation:

Fp
— o’ Asin(kx + wt) + L2 * Asin(kx Twt) =1
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The phase speed and the group speed are
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Thus, on a string, the group speed is the san*rmqsl*ﬂase speed. Wave packets move at
the same speed as individual sine waves.



SinceF+/u = ¢?, we can rewrite the wave equation as follows:
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This is how the wave equation is usually writtén this form, it is true for a number of
different systems, not just for waves on a string.

Example:
In an example above, we had a sine wave on a staagribed by the function

y(e t) = (0.025m)eos|(50m™ e — (100s™1 )]

We can now ask an additional question about trsgesy. Suppose that the string is held
under tension of 2N What is the mass per unit length of this string?

First, we calculate the wave speed:
w  100s7!
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= 2.0m/s
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Now, we use the relationship between the wave spgkedension and the mass per unit
length:
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- = (.50kg /m

n 2 (2.0mm/s)2

The wave equation and super position principle

We can now prove that the superposition principlel$ for waves on a string. A
mathematical way to state the superposition priaggpthat if two functionsg andh,
are solutions of the wave equation, then any coation of these functiony,= Ag +
Bh, whereA andB are constants, is also a solution. This allowswsld multiple sine
waves together to form more complicated solutions.

To prove the superposition principle, assume ¢hatdh are solutions, and write down
the wave equation for the combined waye, Ag + Bh
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In the last step, we have used the given factglaaidh each satisfy the wave equation.
Thereforey = Ag + Bhsatisfies the wave equation, and the superpogtimciple
holds.

Standing Waves

So far, we have considered traveling waves, whiokied either to the left or to the right
with a wave speed There is another kind of waves, which do not eydaut oscillate
in place. These are callstinding waves.

To construct a standing wave, add a left-movingemava right-moving wave. The two
component waves have identical amplitudes? as well as identical wave numbers and
frequencies:
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iyl t) = 3_-'-1#:.13.[;.'3' — wt) + ;;i.wr.rr.[f.';r' + wt)
Now use the trigonometric identities:

sifa + h:l = .w:r:f}.[ujlr'n.ﬂ[h:l — r'r.l.‘-i[flj.if:fj'.[lr.l:l
sinfa —b) = sinla)cos(h) — cos(a)sin(h)

This gives the following expression for the wavadtion:
1 : _ . :
ylre.t) = ;—1 [sin(kx)cos(wt) — sin(wt)cos(kx) + sin(kx)cos(wt) + sin(wt)cos(kx))

ylo.t) = Asin(bhx)cos(wt) = Asin(kx)cos(ket)

Consider the wave function bt 0. In that case;os(t) = 1, and the wave function is
simply a sine curve with amplitude y(x,t) = A sin(kx).As the time advances, the
cosine becomes smaller than 1, then becomes negatid finally reaches a value of -1
before turning back. This causes the amplitudb®&ine curve to oscillate, but the
wave doesn't move left or right. The wave therefoscillates as follows:
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The points at the edges and in the center, wherstting does not move, are called

nodes. The peaks of the wave, where the string movwesigh the greatest distance, are
called theantinodes.



Standing waves on a string with fixed ends

Suppose we have a string of lengthwhich has its ends tied down so that they cannot
move. Since standing waves possess nodes thait daove, it stands to reason that
they can describe the oscillations on such a stprayided that a node is located at each
end of the string.

Let us place one end of the stringkat 0 and the other end &t= L. Then, our wave
must satisfy the conditiong0, t) =0 andy(L, t) = 0. These are calldmundary
conditions, since they proscribe the behavior of the stringséboundaries. Using the
standing wave solution above:

y(0.1) = Asin(k - 0)cos(ket) =0
y(L.t) = Asin(k L)cos(ket) =0

Sincesin0 = 0, the first equation is automatically satisfied dor choice of standing

wave solution. The second equation gives
T
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Here,n is any positive integer (negative numbers justhgeahe sign of the solution, so
they do not really yield any independent solutiarsg] ifn = 0, then the wave function

Is simply zero everywhere.) Our set of soluti®aisfying the wave equation as well as
the boundary conditions, is therefore given byfttlewing, for any choice of a positive

integern:
) Asi (n.';r;r) nmet
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These solutions are called thermal modes of the string.

The angular frequency, frequency and period ofranabmode are given by the
following:

nme Wi ne . 1 2L
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Taking the amplitude to be 1 cm and the lengthnefstring to be 1m, the first normal
mode has = 1 and looks like this (the two curves show the axge of the string's

oscillations):
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The scale on both axes is in meters, and the aédoale is exaggerated.

Suppose the string is under tension of 50N andahmass per unit length of 25g/m. The
wave speed is then given by
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The frequency of oscillations of the first normabahe (called théundamental
frequency or thefirst harmonic) is then equal to

& 44.Tm/ s
f= = 99 447!
2L 2.0m

The second normal mode has 2, and looks like this:
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The frequency of the second normal mode is calledecond harmonic and is equal to
i, = 20 2x44.Tmfs 14,751
*ToL T 20m "

The third normal mode has= 3 and looks like this:
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Its frequency is
o de 3 x 44.7Tm s — 671871
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Spectral decomposition on a string with fixed ends

Any possible displacement of a string with fixedleran be expressed in terms of the
normal modes. The only caveat is that the fattar dscillates in time can be
proportional to a sine as well as a cosine. Argspmde configuration of an oscillating
string with ends tied down at0 andx=L can be written as follows:

o “~ . /nmr L net . nwet
yla.t) = Z.ui‘.( i ) |_-~L,. (h1) ( i ) + B, co ( I )]

n=1

As with the case of traveling waves, the set offments A, andB, are determined
from the initial displacement and speed of everntpon the stringhrough the
techniques of Fourier analysis.



