
Lecture 14 Notes:  07 / 25

4-vectors
Interval between events

Last time, we implicitly made use of the concept of an event, which is described by the 
coordinates (x, y, z) and the time t.  The coordinates and the time vary depending on the 
observer, and can be translated from one observer's frame to another via the Lorentz 
transformation.  The coordinates and the time together make up a 4-vector 
X = (ct, x, y, z).  A 4-vector is defined as a 4-component object that takes on different 
values for different observers according to the Lorentz transformation.

Suppose we have two events at X1 = (ct1, x1, y1, z1) and X2 = (ct2, x2, y2, z2).  The 
separation between these two events is the difference between their coordinates in time 
and space:

Since X1 and X2 are 4-vectors, ∆X is a 4-vector as well, and transforms according to the 
Lorentz transformation.  Moreover, it has an invariant length, which is a 4-scalar, 
meaning that it is the same according to all observers.  The invariant length of the 
interval is known as the invariant interval.

Let us consider the meaning of this invariant interval.  Suppose that there exists an 
observer B who is moving in such a way that he is at position (x1, y1, z1) at t1 and at 
position (x2, y2, z2) at t2.  In this case, according to this observer, both events occur at his 
own position, that is, at the origin:  x1B = x2B = y1B = y2B = z1B = z2B = 0.  The observer 
measures the invariant interval to be

Thus ∆s is the proper time between the two events, multiplied by a factor of c.  Recall 
from last lecture that the proper time for a process was the time elapsed for that process 
according to the observer who is at rest with respect to it.  In this case, the positions of 
the two events are the same according to the observer, so if the events were caused by 
the same process, then the observer would be at rest with respect to it.



Thus, the invariant interval ∆s is equal to ∆t0, the proper time that elapses between the 
two events.  This is the time from one event to another according to an observer who is 
present at one event and moves uniformly in a straight line, in such a way as to be 
present at the next.  Defined this way, this quantity is clearly a 4-scalar:  different 
observers might measure different times between these events, but they all agree that an 
observer moving from one event to another would measure a length of time equal to ∆s.

Note that ∆s2 can be negative, implying an imaginary “proper time” between the two 
events.  This happens when

Thus if is ∆s2 negative, the observer would have to move faster than the speed of light to 
get from event 1 to event 2.  This is not possible; thus there is no proper time between 
the two events, and ∆s2 does not have this physical interpretation.  However, it can be 
shown that in this case, there exists an observer for which the two events are 
simultaneous.  -∆s2 then gives the square of the distance between the two events 
according to this observer, known as the proper distance.

Note also that ∆s2 can be zero for a nonzero 4-vector.  This is the case if getting from 
one event to another requires traveling exactly at the speed of light.  This is unlike the 
length of a regular 3-vector, which if zero implies that the vector itself is zero.

Some terminology:  If ∆s2 is positive, the separation between the two events is called 
timelike.  This is because there exists an observer (one traveling from one event to the 
next) for whom the events are separated in time, but not in space.   If ∆s2 is negative, 
then the separation is spacelike.  This is because there exists an observer for whom the 
events are simultaneous, that is, separated in space but not in time.   If ∆s2 is zero, the 
separation is lightlike, because then the events can be connected by a ray of light 
moving at speed c.

Note that the timelike, spacelike or lightlike character of a separation between two 
events is independent of an observer, since ∆s2  itself is a 4-scalar.



Example:  Suppose that one event occurs on Earth, while another one occurs 1.5 
seconds later on the Moon, 384000 km away, according to an Earth-bound observer.  Is 
the separation between these events timelike, spacelike or lightlike?  If timelike, what is 
the proper time between the two events?  If spacelike, what is the proper distance?

Let x be the direction from the event on Earth to that on the Moon.  Then, the square of 
the invariant interval is equal to

This is positive, so the interval is timelike.  The proper time is

The proper time is less than the time elapsed on Earth, as expected.  This is because an 
observer who is present at both events would be moving at a sizable fraction of the 
speed of light, so the time measured by this observer would be dilated when viewed by 
an observer on Earth.

Now consider what would happen if the time separation was not 1.5, but 1.0 seconds. 
Then, we would have

This is negative, meaning that the interval is spacelike.  The time is so short that an 
observer cannot get from one event to another in time, as that would require moving 
faster than light.  The proper distance between the two events would be

This is less than the distance from the Earth to the Moon.  This can be understood by 
considering what kind of observer would see these two events as simultaneous.  We can 
calculate the observer's speed by writing down the Lorentz transformation and solving 
for the speed, but clearly, in order to see these events as simultaneous, the observer 
would have to be moving at a significant fraction of the speed of light relative to the 
Earth and the Moon.  Thus the distance from the Earth to the Moon would be contracted.

Note that the proper distance between two events is not the same as the proper distance 
between the two places where they occur!  It is only the same if the events occur 
simultaneously according to an observer at rest with respect to their locations.



4-velocity

So far, we have seen two 4-vectors: the coordinate 4-vector and the separation 4-vector, 
and one 4-scalar:  the invariant interval associated with a separation between two events, 
related to the proper time or the proper distance depending on the sign..  We can now 
form additional 4-vectors.  As the first example, consider the motion of an object 
moving at speed v in the x-direction relative to an observer.  We can take the derivative 
of the object's coordinates (a 4-vector) with respect to its proper time (a 4-scalar).  Since 
the numerator of the derivative transforms under Lorentz transformation as a 4-vector, 
and the denominator is a 4-scalar and doesn't change, the result will be a 4-vector:

Now, t = γ t0 so that dt0 = dt / γ, and x = vt, since the object is moving at speed v in the 
x-direction.  y and z are constant.  Thus,

In general, for an object moving with any velocity in any direction,

Recall that in the previous lecture we defined γ as 

Let us compute the invariant length of the 4-velocity:

Thus the invariant length of the 4-velocity of any object is equal to c.  To see this, 
consider the moving object in its own frame.  It's obviously not moving relative to itself, 
so its speed in its own frame is zero, and so the spatial components of the 4-velocity in 
this frame are zero.  The time elapsed in this frame is the object's proper time, and so ct 
changes by c whenever t0 changes by 1 second.  Since the change in elapsed time is the 
only piece of the 4-velocity that is not zero in this frame, the magnitude of the 4-velocity 
must be c.  But as a 4-scalar, it is the same for all observers, so it must be c in any frame.



Example:  An object is moving at a speed of 0.5c in at an angle of 30 degrees from the 
x-axis, relative to an observer on Earth:

(a)  What is the 4-velocity of this object relative to the observer on Earth?

(b)  What is the 4-velocity relative to an observer B moving with speed 0.7c in the x 
direction?

(c)  What is the regular 3-velocity with respect to that observer?  What is the speed of 
the object and the direction of its motion?

To find the 4-velocity, we'll need γ, vx and vy (vz = 0).  These are

The 4-velocity is

The observer B moves with speed 0.7c in the x direction.  The 4-velocity according to 
observer B is given by the Lorentz transformation:

Thus in observer B's frame,



To determine the object's 3-velocity, notice that the time component of the 4-velocity is 
equal to γc, and so γ  for the object's motion is 1.127.  The other components of the 4-
velocity are just γ  times the components of the 3-velocity.  Thus, the 3-velocity 
according to observer B is

The speed is

The direction of motion with respect to B's x-axis is given by

Observer B thus sees the object moving at 124 degrees from the x-axis, or 34 degrees 
from the y axis, relative to himself:

We could also use the velocity addition formula to get this result; however, since in this 
case the direction of motion of the object and the observer is not the same, we would 
need to derive the rule for velocity addition in a direction different than the direction of 
motion.  The method using the 4-velocity can be summarized as follows, and is always 
valid provided the speed of the object is not equal to c:

(1)Determine the 4-velocity of the object in the initial reference frame
(2)Transform it to the desired reference frame using the Lorentz transformation
(3)Calculate the 3-velocity of the object in the new frame from the 4-velocity



4-momentum

In classical mechanics, the momentum was obtained by multiplying the velocity of an 
object by its mass.  Similarly, in relativistic mechanics, there is a 4-vector quantity 
called the 4-momentum, obtained by multiplying the 4-velocity by the mass of the 
object:

The mass of the object is defined as the mass measured in the frame where the object is 
at rest; by this definition, it is a 4-scalar, since even if different observers might measure 
a different “effective mass”, they would all agree that if the mass was measured in the 
object's rest frame, it would be equal to m.  The 4-momentum is thus a product of a 4-
vector and a 4-scalar, and is therefore a 4-vector. This means it transforms between 
different observers according to the Lorentz transformation, just like the position 4-
vector and the 4-velocity 4-vector.

Let us write the components of the 4-momentum as follows:

The time component of the 4-momentum is p0 = γmc.  For speeds small compared to c, γ 
can be approximated by the binomial expansion:

The first term is just a constant, while the second term is equal to 1/2 mv2 / c.  This is 
just the kinetic energy in classical mechanics divided by c.  We can therefore identify p0 

with the energy of the particle:

The first term in the approximate expansion is a constant, present even for a particle at 
rest.  Thus for a particle at rest, the energy is proportional to its mass:  E = mc2.  This is 
known as the particle's rest energy.  The second term gives the particle's kinetic energy, 
while the higher-order terms give relativistic corrections to the kinetic energy.  The 
actual relativistic kinetic energy, without approximations, is given by



Note that for a nonzero mass, the energy approaches infinity as v approaches c.  Thus it 
is impossible to accelerate a massive particle to exactly the speed of light, as that would 
require infinite energy.  We will see below that massless particles always move at the 
speed of light.

In terms of the energy, the 4-momentum vector can be written as

For this reason, it is also known as the energy-momentum 4-vector.

Note that the velocity of the particle can be calculated from the components of the 4-
momentum as follows:

Example:  An electron has rest energy of mc2 = 0.511 MeV.  What is the speed of an 
electron that is accelerated through a potential of 106 V?

An electron accelerated through a million volts gains 1 MeV in kinetic energy.  Its total 
energy (kinetic plus rest energy) thus becomes 1.511 MeV.  Plug this into the expression 
for the energy and solve for the electron's speed:

Thus the speed of the electron is 0.941c.

Mass-energy-momentum relationship

Note that since P = mU, P2 = m2U2 = m2c2.  Identifying the time component of the 4-
momentum as E / c and the space component as the 3-momentum, this gives



Massless particles
The energy-momentum relationship can be applied to particles with zero mass.  In this 
case, m = 0, and the energy-momentum relationship gives

In terms of the energy and the momentum, the speed of any particle is (see above):

Therefore, massless particles move at the speed of light.

Example:  What is the speed of a massive particle with mass m and 3-momentum of 
magnitude p?

The equation relating the momentum, energy and speed still holds, but the energy can 
now be determined from the energy-momentum relationship for a massive particle:

You can see that the denominator is greater than 1, so the speed is always smaller than c 
for any magnitude of the 3-momentum.  As the 3-momentum approaches infinity, the 
denominator approaches 1, and the speed approaches c.

Conservation of energy and momentum

Just like in nonrelativistic mechanics, the energy and momentum are conserved.  In 
relativistic mechanics, this can be expressed as follows:

The total 4-momentum of the system in the initial state is equal to the total 4-momentum 
in the final state.  Let us apply this to a simple problem.  



Example:  Suppose that a single particle of mass M, initially at rest, decays into two 
particles, each of mass m.  What is the speed of each final particle?

If the initial particle is at rest, it has a 4-momentum of P0 = (E0 /c, 0) = (Mc, 0).  The final 
particles have 4-momenta given by

The sum of the initial 4-momenta (only P0) must be the same as the sum of the final 4-
momenta (P1 + P2).  This gives us

The first equation on the bottom line gives conservation of energy (including mass) 
while the second equation is conservation of momentum.  We can see that for an initial 
particle at rest, the momenta of the two outgoing particles must be in opposite directions. 
Now the energy of the outgoing particles is

The energies of the particles are equal because their masses are equal, and the 
magnitudes of their 3-momenta are equal.  Thus we get

Note that this only gives a valid result if M > 2m.  Thus a particle cannot decay into two 
particles if the total mass of the two is more than the mass of the initial particle.  If the 
mass of the products is less than the mass of the initial particle, however, the extra mass 
can be converted into kinetic energy.

We will give a more complicated example of how to use the conservation of energy-
momentum when we discuss Compton scattering in the next lecture.


