Lecture 14 Notes: 07/ 25

4-vectors
I nterval between events

Last time, we implicitly made use of the concepanévent, which is described by the
coordinatesy, y, 2) and the timé¢. The coordinates and the time vary dependindnen t
observer, and can be translated from one obsefram® to another via the Lorentz
transformation. The coordinates and the time togrethake up 4-vector

X=(ct, x,y, 2. Ad-vector is defined as a 4-component objeat takes on different
values for different observers according to theeldz transformation.

Suppose we have two events<at= (Cty, X, Y1, z) andX; = (Ctz, X2, V2, 2). The
separation between these two events is the difference betwesncoordinates in time
and space:

AX =Xy — Xy = (ety —cty.wg — 1.4 — 1. 20 — 21

SinceX; andX; are 4-vectorsX is a 4-vector as well, and transforms accordinipé¢o
Lorentz transformation. Moreover, it has an inaatilength, which is 4-scalar,
meaning that it is the same according to all obeysrvThe invariant length of the
interval is known as thievariant interval.
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Let us consider the meaning of this invariant waér Suppose that there exists an
observeB who is moving in such a way that he is at posif}any;, z) att; and at
position &, Y2, z) att,. In this case, according to this observer, betnes occur at his
own position, that is, at the origins = Xz = Vis = Y8 = z1s = s = 0. The observer
measures the invariant interval to be
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Thusd4sis theproper time between the two events, multiplied by a factoc.oRecall
from last lecture that the proper time for a preosas the time elapsed for that process
according to the observer who is at rest with ressfeit. In this case, the positions of
the two events are the same according to the obisesw if the events were caused by
the same process, then the observer would betatitbsespect to it.



Thus, the invariant intervals is equal tadt,, the proper time that elapses between the
two events. This is the time from one event tatla@oaccording to an observer who is
present at one event and moves uniformly in agditdine, in such a way as to be
present at the next. Defined this way, this qunamgiclearly a 4-scalar: different
observers might measure different times betweesetbegents, but they all agree that an
observer moving from one event to another wouldsuesaa length of time equal #is.

Note that4s’ can be negative, implying an imaginary “proper tiflnetween the two
events. This happens when

(1 — m2)” + (1 — 92)” + (21 — 22)7 > (ct2 — ct1)”
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Thus if is4s? negative, the observer would have to move faktar the speed of light to
get from event 1 to event 2. This is not possithias there is no proper time between
the two events, ands? does not have this physical interpretation. Hoaveit can be
shown that in this case, there exists an obseovewtiich the two events are
simultaneous. 4° then gives the square of the distance betweetwthevents
according to this observer, known as pheper distance.

Note also tha#ls’ can be zero for a nonzero 4-vector. This is #sedf getting from
one event to another requires traveling exactthaspeed of light. This is unlike the
length of a regular 3-vector, which if zero impliteat the vector itself is zero.

Some terminology: s’ is positive, the separation between the two evierttalled
timelike. This is because there exists an observer (aneling from one event to the
next) for whom the events are separated in timenbuin space. s’ is negative,
then the separation $pacelike. This is because there exists an observer fonwihe
events are simultaneous, that is, separated iredpamot in time. I4s is zero, the
separation isightlike, because then the events can be connected byod Irght
moving at speed.

Note that the timelike, spacelike or lightlike cheter of a separation between two
events is independent of an observer, siiggétself is a 4-scalar.



Example: Suppose that one event occurs on Earth, whilthanone occurs 1.5
seconds later on the Moon, 384000 km away, acogtdian Earth-bound observer. Is
the separation between these events timelike, Bpace lightlike? If timelike, what is
the proper time between the two events? If spemelvhat is the proper distance?

Let x be the direction from the event on Earth to thathenMoon. Then, the square of
the invariant interval is equal to

A = PAPR — Ar® = (155 x 3 x 10%km/s)” — (3.84 x 10°km)” =

5.50 % 10" km?

This is positive, so the interval is timelike. Ti@per time is
As® = AL

As 5.50 % 1080 Lm?
._\?L-” = = \/.j ! — ;J' =1).T824
c 3 x 105k /s

The proper time is less than the time elapsed otin Eas expected. This is because an
observer who is present at both events would bangat a sizable fraction of the
speed of light, so the time measured by this olesewould be dilated when viewed by
an observer on Earth.

Now consider what would happen if the time sepamatvas not 1.5, but 1.0 seconds.
Then, we would have

As? = (1.[I.~= x 3 x 10°%km/s)? — (3.84 x 10°%km/s)” = =5.75 x 10%km?
This is negative, meaning that the interval is splke. The time is so short that an

observer cannot get from one event to anothema,tas that would require moving
faster than light. The proper distance betweenwioeevents would be

Ar =+ —=As2 = 5.75 x 109km2 = 2.40 x 10%km

This is less than the distance from the EarthéoMiloon. This can be understood by
considering what kind of observer would see thegedvents as simultaneous. We can
calculate the observer's speed by writing dowrLtirentz transformation and solving
for the speed, but clearly, in order to see thesats as simultaneous, the observer
would have to be moving at a significant fractidrire speed of light relative to the
Earth and the Moon. Thus the distance from théhEarthe Moon would be contracted.

Note that the proper distance between two evemistithe same as the proper distance
between the two places where they occur! It iy timt same if the events occur
simultaneously according to an observer at rest mispect to their locations.



4-velocity

So far, we have seen two 4-vectors: the coordiratector and the separation 4-vector,
and one 4-scalar: the invariant interval assodiatiéh a separation between two events,
related to the proper time or the proper distaregeedding on the sign.. We can now
form additional 4-vectors. As the first examplensider the motion of an object

moving at speed in the x-direction relative to an observer. Wa take the derivative

of the object's coordinates (a 4-vector) with respe its proper time (a 4-scalar). Since
the numerator of the derivative transforms undeehtz transformation as a 4-vector,
and the denominator is a 4-scalar and doesn't ehamg result will be a 4-vector:

dX i
.f_.-r = = — (et vty =z
ay oy vtye)

Now, t = yto so thatdt, = dt/ ), andx = \, since the object is moving at speeid the
x-direction. y andz are constant. Thus,
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In general, for an object moving with any veloaityany direction,

U= (Yo .. Ty .:”I'.:I = 7. .HTII

Recall that in the previous lecture we definexs
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Let us compute the invariant length of the 4-vdioci
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Thus the invariant length of the 4-velocity of ahject is equal to. To see this,
consider the moving object in its own frame. dtwiously not moving relative to itself,
So its speed in its own frame is zero, and sophéia components of the 4-velocity in
this frame are zero. The time elapsed in this &&she object's proper time, andcso
changes by whenevet, changes by 1 second. Since the change in elgipseds the
only piece of the 4-velocity that is not zero irstrame, the magnitude of the 4-velocity
must bec. But as a 4-scalar, it is the same for all obsexvso it must bein any frame.



Example: An object is moving at a speed of ©ib at an angle of 30 degrees from the
x-axis, relative to an observer on Earth:

(a) What is the 4-velocity of this object relatieethe observer on Earth?

(b) What is the 4-velocity relative to an obserm3anoving with speed 0c/in thex
direction?

(c) What is the regular 3-velocity with respecthat observer? What is the speed of
the object and the direction of its motion?

To find the 4-velocity, we'll neeg v, andv, (v, = 0). These are
| |
Y= = — = 1.155
V91— jes V1 — .52

v, = veos sl = 0.5c- 0.866 = 0.433¢

vy, = vsin30° = 0.5¢ - 0.5 = 0.250¢
The 4-velocity is

U = (ye,yu,. yu,.yv.) = (1.155.0.500,0.289.0) ¢

The observeB moves with speed (@cin thex direction. The 4-velocity according to
observer B is given by the Lorentz transformation:

1
U =~ (U — BU Ll 155e — 0.7 = 0.500c) = 1.127¢
=71 )= VI—072 '
. 1
Uy =4 (U' = gU") = ——==(0.500c — 0.7 x 1.155¢) = —0.432¢
p =707 =A%) VI—0.7
U =U?=028)c Uj=0"=0

Thus in observer B's frame,
Up =(1.127. —0.432.0.289.0) ¢



To determine the object's 3-velocity, notice tiha time component of the 4-velocity is
equal toyc, and soy for the object's motion i$.127. The other components of the 4-

velocity are justy times the components of the 3-velocity. Thus,3kvelocity
according to observés is

1
= (—0.432.0.280.0) ¢ = (—0.383.0.256.0) ¢
1.127

The speed is

v = V2 = ev/0.3832 £ 0.2562 = 0.461¢

The direction of motion with respect Bs x-axis is given by

IJ _[I.:-ig:-i -
tan gy = B _ — = —1.495
Ve ().256

By = 124°

Observer B thus sees the object moving at 124 dedrem thex-axis, or 34 degrees
from they axis, relative to himself:

y

o
vy=0.461c Op= 124

X
We could also use the velocity addition formulgd this result; however, since in this
case the direction of motion of the object anddbserver is not the same, we would
need to derive the rule for velocity addition idigection different than the direction of
motion. The method using the 4-velocity can bersanezed as follows, and is always
valid provided the speed of the object is not etial

(1) Determine the 4-velocity of the object in the mitieference frame
(2) Transform it to the desired reference frame udneglLiorentz transformation
(3) Calculate the 3-velocity of the object in the neanfie from the 4-velocity



4-momentum

In classical mechanics, the momentum was obtaigeduitiplying the velocity of an
object by its mass. Similarly, in relativistic narnics, there is a 4-vector quantity
called the4-momentum, obtained by multiplying the 4-velocity by the max the
object:

P =mlU = (vme. ymi)

The mass of the object is defined as the mass meghsuthe frame where the object is
at rest; by this definition, it is a 4-scalar, ®reven if different observers might measure
a different “effective mass”, they would all agtéat if the mass was measured in the
object's rest frame, it would be equahto The 4-momentum is thus a product of a 4-
vector and a 4-scalar, and is therefore a 4-vettos. means it transforms between
different observers according to the Lorentz trarmeftion, just like the position 4-
vector and the 4-velocity 4-vector.

Let us write the components of the 4-momentum ksve:
.P = [':r'fH.r', ':r'f”_t_f) — (f’ﬂ-f?]

The time component of the 4-momentunpds ymc. For speeds small comparedcig/
can be approximated by the binomial expansion:
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The first term is just a constant, while the sectanth is equal to 1/8v*/ c. This is
just the kinetic energy in classical mechanicsddidi byc. We can therefore identify
with the energy of the patrticle:

1
Iy 3] ]
E= e FoamneT + ;rm" + ...
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The first term in the approximate expansion is @stant, present even for a particle at
rest. Thus for a particle at rest, the energyap@rtional to its masskE = mc® This is
known as the particletest energy. The second term gives the particle's kinetieggne
while the higher-order terms give relativistic @ations to the kinetic energy. The
actual relativistic kinetic energy, without appnaétions, is given by

Ey = E—mc* = (y —1)mc?



Note that for a nonzero mass, the energy approacfieisy asv approaches. Thus it

IS impossible to accelerate a massive particlexaetty the speed of light, as that would
require infinite energy. We will see below thatgslass particles always move at the
speed of light.

In terms of the energy, the 4-momentum vector awilitten as
E
- (£)
-
For this reason, it is also known as éner gy-momentum 4-vector.

Note that the velocity of the particle can be cltad from the components of the 4-
momentum as follows:

0 ymid p o cp
i VI N fr” FE

Example: An electron has rest energyroé® = 0.511MeV. What is the speed of an
electron that is accelerated through a potential0d¥/?

An electron accelerated through a million voltsngal MeV in kinetic energy. Its total
energy (kinetic plus rest energy) thus becomeslIME€V. Plug this into the expression
for the energy and solve for the electron's speed:

: ne?
E = ':r'J'H.I"_' = lll,r—r— = 1:}].]._11_!{!11'
\ 1 — t'j..."'r'j
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= ( E ) ¢ ( E ) \ (1.511.:‘1—1&-1--"

Thus the speed of the electron is 0©41

M ass-ener gy-momentum relationship

Note that sinc® = mU, P> = nPU? = n¥c®. Identifying the time component of the 4-
momentum a& / ¢ and the space component as the 3-momentum, thas giv
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Massless particles
The energy-momentum relationship can be appligghtocles with zero mass. In this
casem= 0, and the energy-momentum relationship gives

B2 = &2
E -_ f'.l‘l"

In terms of the energy and the momentum, the spkady particle is (see above):
i s
_—= — = 1
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Therefore, massless particles move at the spelaghaf

Example: What is the speed of a massive particle with maaed 3-momentum of
magnitudep?

The equation relating the momentum, energy anddsgteholds, but the energy can
now be determined from the energy-momentum relaligmfor a massive particle:
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You can see that the denominator is greater than the speed is always smaller tlean
for any magnitude of the 3-momentum. As the 3-mmion@ approaches infinity, the
denominator approaches 1, and the speed approaches

Conservation of energy and momentum

Just like in nonrelativistic mechanics, the eneagg momentum are conserved. In
relativistic mechanics, this can be expressed lasArfs:

Y P=) Ps

The total 4-momentum of the system in the inittates is equal to the total 4-momentum
in the final state. Let us apply this to a simpieblem.



Example: Suppose that a single particle of mikgnitially at rest, decays into two
particles, each of mass What is the speed of each final particle?

If the initial particle is at rest, it has a 4-mam@mn ofP,= (Eo/c, 0) = Mc, 0). The final
particles have 4-momenta given by
Pl — L_Ell‘f?l) Pj — lEjrf?j)

The sum of the initial 4-momenta (orffy) must be the same as the sum of the final 4-
momentalp,; + P,). This gives us

E+ Es

El -|—.E-_1;:_-'1|l-_fr'j fﬂ —|—E:_-3:[|

The first equation on the bottom line gives conaBon of energy (including mass)
while the second equation is conservation of moaomantWe can see that for an initial
particle at rest, the momenta of the two outgoiagiges must be in opposite directions.
Now the energy of the outgoing particles is

o]

! o s : f - :
E = \”-"ff’T": + m2et Es = V’;r}r + m2ct

P = —pa Ey=E=F

The energies of the particles are equal becausenthsses are equal, and the
magnitudes of their 3-momenta are equal. Thusete g

3] ]
2 = Mc? = 2yme>

Note that this only gives a valid resulMf> 2m. Thus a particle cannot decay into two
particles if the total mass of the two is more tll@mass of the initial particle. If the
mass of the products is less than the mass ohiti@ particle, however, the extra mass
can be converted into kinetic energy.

We will give a more complicated example of how $& the conservation of energy-
momentum when we discuss Compton scattering iméxelecture.



