L ecture 13 Notes: 07/ 20
I nvariance of the speed of light

The Michelson-Morley experiment, among other expents, showed that the speed of
light in vacuum is a universal constant, as predidty Maxwell's equations. It is the
same for all observers, and for light coming fromy direction. This is at odds with our
everyday experience with speeds, where the speaalyobbject relative to an observer
depends on the motion of the observer.

Albert Einstein started with the assumption thakiell's equations, along with all
other fundamental laws of physics, in fact holddtrobservers, and so the speed of
light really is independent from the observer. @ssumption that the laws of physics
are the same for all observers, together with igefend observer-independent speed of
light, is known as therinciple of relativity.

The principle of relativity requires us to abandie notion of absolute time. In
particular, with the principle of relativity, twosents that are simultaneous according to
one observer are not simultaneous according tdhanofo see this, consider the
following example:

A train of lengthL is moving to the right with speed An observer, let's call him Bob,
stands on top of the train, right in the middlej aends a light pulse to both ends. Since
the distance to both ends of the trains is the s#rmaeulses arrive at the same time. |If
we call the signal arriving at the back of thertravent A, and the signal arriving at the
front of the train event B, then A and B are siran#ous according to Bob.
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However, now consider that Alice is standing néarttacks, in the same spot as Bob
when he sends the light pulses. By the principlelativity, she also sees both light
pulses moving at speed But now the back of the train moves towardslitiie pulse,
while the front of the train moves away from it,the light reaches the back of the train
first. Thus A happens before B, according to Alice



Proper time and time dilation

Consider the following thought experiment. Bolomsthe train. He constructs a clock
by bouncing a pulse of light off a mirror, and m&asg the amount of time it takes the
light to get back. If the mirror is a distandtéom the light source, then the light moves
a distance @ at speed, and Bob will see the light come back a tidie= 2d/ c later.
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Now Alice watches this experiment from the grouedmthe train tracks. According to
her, the apparatus is moving to the right, soititg takes a path shown below:
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The light has to travel a greater distance, buhbyprinciple of relativity, it still moves
at speed. Therefore, the time it takes the pulse to gthnéomirror and back is longer
according to Alice than according to Bob. SincdBould use this clock to time any
kind of a physical process on the train (such as fast a regular clock runs, or his
heartbeat, or the rate at which radioactive padidecay), all processes on the train
seem to run slower to Alice. This is knowntiase dilation: clocks (and all other
processes) that are moving relative to an obseqmeear to run slow to that observer.



We can calculate how much slower than normal Bains appears to run. The length
of the path of light according to Alice is
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The amount of time it takes the light to cover {agh is

pt =L YAFPEE
Square both sides and solve fitr
o Ad® P AR
(¢ — t'jjl_\?‘.j = 4°
2d 2d /e
At = = = = ff
s — = W/ 1 — t"'...-'r"'
Finally, note thaRd / c = A4t,, the time that elapses according to Bob. Theeegfor
.l# ]
__“J _ Ll

V1—12/e2

Again, we can see that more time elapses for Ahaea for Bob for the same process
occurring on the train, and therefore processdab®irain appear to run slowly.

The following functions of velocity appear oftenrglativity, and therefore get their own
symbols:
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We can write our equation for time dilation as
._\.FL = ':r'._\.tﬂ

The timedt,, which is the amount of time that passes accortlirige clock's own
reference frame, is known as thr@per time.

Example: An unstable elementary particle called the muas dn average lifetime of
2.2us before decaying into other particles. This lifsiis in a frame in which the muon
is at rest. What is the lifetime of a muon mowmith a speed of 0c? 0.92€? If muons
with these speeds are produced in a nuclear reatkov far, on average, will they
travel before decaying?



At 0.5c, we have, for the muon lifetime,
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At 0.9, the muon lifetime becomes
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You can see that the time dilation is fairly mod®stn for a particle moving at half the
speed of light; the lifetime of such a particlemy slightly longer than that of a particle
at rest. However, for a particle moving at 99%gheed of light, the lifetime is
considerably larger than for a resting particle.

The average range prior to decay of a muon mowiidgba is

ro=10=(2.54 x 107%)(0.5 x 3 x 10%n/s) = 380m

The average range of a muon moving at ©i89
r=T1v =156 x 107%)(0.99 x 3 x 10%m/s) = 4600m

This is more than 10 times the range of the slawaon, even though the speed is only
twice as much. This is because the faster-moviagmhas a much longer lifetime, due
to time dilation.

Muons are produced in the upper atmosphere bytarastion of solar radiation and
cosmic rays with air molecules. We can see thttout time dilation, muons from the
upper atmosphere would not be able to reach thacgur However, fast-moving muons
are detected on the surface, thus providing evelémctime dilation and for the theory
of relativity.

Length Contraction

Suppose now that Bob is in his high-speed trainjingpat speed, traveling in a

straight line from San Diego to San Francisco. diigk measures that an amount of
timet, has passed, and Bob therefore concludes thatdtaance between San Diego and
San Francisco is= vt,. Note that, is the proper time, butis not the proper distance,
since this is a distance measured according to iBabframe where San Francisco and
San Diego are not at rest. This is whgoes not get a O subscript.



Theproper distance between the two cities is the distance accordijite, who is
having a beer at Porters Pub, at rest with regpdmth San Diego and San Francisco.
She sees Bob ride the train at spedult due to time dilation, according to Alice, he
takes a longer time= yt, to get from one place to the other. Alice themefooncludes
that the distance between San Diego and San Fcarisig, = vt = pvto = yx. Again,

this is the proper distance, because Alice issitweh respect to the points between
which the distance is measured. Thus, if the prdigance iso, the distance according
to an observer moving relative to the object atdpas
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Unlike time, which increases compared to the praojpse with motion, the distance
decreases. It can be shown that only the compari¢hé distance parallel to the
motion is decreased; perpendicular distances affaated. This is known dength
contraction.

Example: A spaceship is flying past an asteroid at a sjpé@€d3c. An observer on the
asteroid marks the time that elapses between wWigendse of the ship passes the
asteroid, and when the tail of the ship passesfiadd that this time is 1.6s. What is
the length of the spaceship according to the crewaard?

The length of the spaceship according to the oles@&w the asteroid is
[ =vt = (0.8 x3x 10%n/s)(1.6 x 107%s) = 380m

This length is contracted compared to the propegtle so the length according to the
spaceship's crew is longer:
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The spaceship is thus G80ong, not just 38t as the observer might think if he didn't
know about relativity.

If the ship was moving past the asteroid atOwhat length would the observer
measure?

At 0.9c, the length measured by the observer on the adtwould be

[ =lpy/1 —v2/c? = 630my/1 —0.92 = 275m

The observer would see the ship even more contrdicts at 0.8



Lorentz Transfor mations

Suppose that Bob passes Alice at a relative speet the moment they pass each
other, they decide to measure the distana®ng Bob's direction of travel from the
point where they met, and the timnffom the moment they met. In other words, the
origins of theirx-axes and-axes coincide at the meeting point. Of coursey lan, the
origins of theirx-axes and-axes are no longer the same.

Suppose Bob observes an event (say, an explogipoksrionxs relative to himself,
after an amount of timg passed according to his clock. At what positinod ame does
Alice observe this event?

In Bob's frame, Alice is now a distandgg to the left of Bob, and the event occurs a
distancexs to the right of Bob. Thus, Bob sees the distdreteveen the event and Alice
asvtg + Xg!
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However, Bob is moving relative to Alice, so thistdnce is not the proper distance.
According to Alice, the distance is larger by atdaof y:

rp =g+ vig)

If Bob is moving with velocity relative to Alice, then Alice is moving with velibg -v
relative to Bob. Therefore, we can write the saapeation for translating positions of
events from Alice's frame to Bob's frame, by repige with -v. Note that this doesn't
change the value 9f sincey depends o

rp =y lrg—vty)

Now, if the event occurs at tintein Bob's frame, at what time does it occur in Alsc
frame? We can plug the expressionX{pomto the equation above and solve tior
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The coordinates perpendicular to the direction ofiom are the same for Bob and for
Alice. Thus we have the following “dictionary” ftranslating coordinates and times of
events from Bob's frame to Alice's frame and vieesd:
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These equations, relating the position and timenoévent as measured by one observer
to that as measured by a different observer, avevikras thd_orentz transformation.

Velocity Addition

Suppose there is an object that is moving with dpgeelative to Bob, while Bob is
moving with speed relative to Alice. What is the speed of the objeg relative to
Alice?

Without relativity, this would be simply, = v + vs. However, this cannot be true, as
this kind of equation does not keep the speedybt tonstant between observers. We
now derive the relativistically correct way of adgivelocities.

Suppose as the time according to Bepb¢changes by an amouttt, the position of the
object according to Bolxs, changes by an amouihts. The speed according to Bob is
then simplws = dxs / dts. The speed according to Alice is
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Notice that forvs andv small, the denominator is almost 1, and the famiion-

relativistic relationshipy. = vs + Vv, is recovered. What if Bob is observing a ray of

light, which he sees moving at spegd c? Then,
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As required by relativity, if Bob sees the light viiay at speed, so does Alice, even
though she is moving relative to Bob.

Example: Alice sees a muon fly by at a speed of 6,%81t Bob, who is chasing after
the muon in his high-speed train, sees it movingriaking him at a speed of only 6.7
What is Bob's speed relative to Alice?

By the velocity addition rule,
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Bob is thus moving at a speed of @289
Generalization of L orentz transfor mations, 4-vectors

The Lorentz transformations relate the coordinatestime of an event according to one
observer to the coordinates and times of the samet @ccording to another observer.
We can write the time and coordinates of an eveiat 4 component object, known as a
4-vector:

(et . 1. ,‘,;l = (:I"”. :l"l. :f'j. :f_."l-]
X% is known as the time component of the 4-vectada(i = 1, 2, 3) are known as the
space components. Note that the superscriptssiapdl which component of the 4-
vector we are talking about; we are not raisinglaing to any power. In this notation,
the components of the 4-vector, which we will denoy the capital letteX, transform
according to the Lorentz transformation as follows:

W=y (5 + Bok) = (s — frd)

;n"‘{‘1 =y (;f'}_g -+ ffLJ ;f'b = (;rh — f.u‘j',l)

L

A —.I'B "l.r‘l_"l_.r_s"

b



We useds = v/ c for simplicity of notation. We will see later d¢imat there are other
quantities (such as the 4-velocity, the frequerdag wave number, and the energy plus
momentum) that transform from one observer to arathexactly the same way.

Consider the following quantity composed from comgras of a 4-vector:
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Note the similarity to the length of a regular 3o from the Pythagorean theorem,
except that there are 4 components rather thamd3th&re is an additional minus sign
between the time component and the space components

According to observek, this quantity is equal to
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According to observds, it is equal to
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We will show that these two are in fact equal,tsai$’ is an absolute quantity, the same
for all observers. Start with the expression agicgy toA, and change all the
coordinates to those Bis frame by using the Lorentz transformation:
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Thus the value of is independent of the observer. Quantities ssahia, which are

the same when measured by any observer, are kredvecalars. Other examples of 4-
scalars include the total number of particles iasid object, proper length and proper
time (note that while the length and time dependhenobserver measuring them, the
proper length and time are intrinsic properties of thgobor process itself, and are thus
independent of any observer.)



Generalizing to any kind of 4-vector (not just atioates and time of an event), we
define thanvariant length of the 4-vector in the same way:

V= (k) = (10.7)

If Vis a 4-vector, theR? is a 4-scalar (the same for all observers). Ehéxactly
analogous to the behavior of vectors in 3D withpegs to rotation of the coordinate
system: the components of the vector change depend the coordinates chosen, but
the length of the vector remains the same.

Similarly, we define amvariant dot product between two 4-vectotd andV-
U-V=u""—i-d

SinceU andV are both 4-vectors, they transform the same wagiuborentz

transformation. Therefore the dot product abovedspendent of any observer and is a

4-scalar, just like the invariant length of a 44teec

We will make use of 4-vectors when we discuss #hativistic description of waves, and
the relationship between energy, momentum and mass.



