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Invariance of the speed of light

The Michelson-Morley experiment, among other experiments, showed that the speed of 
light in vacuum is a universal constant, as predicted by Maxwell's equations.  It is the 
same for all observers, and for light coming from any direction.  This is at odds with our 
everyday experience with speeds, where the speed of any object relative to an observer 
depends on the motion of the observer.

Albert Einstein started with the assumption that Maxwell's equations, along with all 
other fundamental laws of physics, in fact hold for all observers, and so the speed of 
light really is independent from the observer.  The assumption that the laws of physics 
are the same for all observers, together with a finite and observer-independent speed of 
light, is known as the principle of relativity.

The principle of relativity requires us to abandon the notion of absolute time.  In 
particular, with the principle of relativity, two events that are simultaneous according to 
one observer are not simultaneous according to another.  To see this, consider the 
following example:

A train of length L is moving to the right with speed v.  An observer, let's call him Bob, 
stands on top of the train, right in the middle, and sends a light pulse to both ends.  Since 
the distance to both ends of the trains is the same, the pulses arrive at the same time.  If 
we call the signal arriving at the back of the train event A, and the signal arriving at the 
front of the train event B, then A and B are simultaneous according to Bob.

However, now consider that Alice is standing near the tracks, in the same spot as Bob 
when he sends the light pulses.  By the principle of relativity, she also sees both light 
pulses moving at speed c.  But now the back of the train moves towards the light pulse, 
while the front of the train moves away from it, so the light reaches the back of the train 
first.  Thus A happens before B, according to Alice.



Proper time and time dilation

Consider the following thought experiment.  Bob is on the train.  He constructs a clock 
by bouncing a pulse of light off a mirror, and measuring the amount of time it takes the 
light to get back.  If the mirror is a distance d from the light source, then the light moves 
a distance 2d at speed c, and Bob will see the light come back a time ∆t0 = 2d / c  later.

Now Alice watches this experiment from the ground near the train tracks.  According to 
her, the apparatus is moving to the right, so the light takes a path shown below:

The light has to travel a greater distance, but by the principle of relativity, it still moves 
at speed c.  Therefore, the time it takes the pulse to go to the mirror and back is longer 
according to Alice than according to Bob.  Since Bob could use this clock to time any 
kind of a physical process on the train (such as how fast a regular clock runs, or his 
heartbeat, or the rate at which radioactive particles decay), all processes on the train 
seem to run slower to Alice.  This is known as time dilation:  clocks (and all other 
processes) that are moving relative to an observer appear to run slow to that observer.



We can calculate how much slower than normal Bob's time appears to run.  The length 
of the path of light according to Alice is

The amount of time it takes the light to cover this path is

Square both sides and solve for ∆t:

Finally, note that 2d / c = ∆t0, the time that elapses according to Bob.  Therefore,

Again, we can see that more time elapses for Alice than for Bob for the same process 
occurring on the train, and therefore processes on the train appear to run slowly.

The following functions of velocity appear often in relativity, and therefore get their own 
symbols:

We can write our equation for time dilation as

The time ∆t0, which is the amount of time that passes according to the clock's own 
reference frame, is known as the proper time.

Example:  An unstable elementary particle called the muon has an average lifetime of 
2.2µs before decaying into other particles.  This lifetime is in a frame in which the muon 
is at rest.  What is the lifetime of a muon moving with a speed of 0.5c?  0.99c?  If muons 
with these speeds are produced in a nuclear reaction, how far, on average, will they 
travel before decaying?



At 0.5c, we have, for the muon lifetime,

At 0.99c, the muon lifetime becomes

You can see that the time dilation is fairly modest even for a particle moving at half the 
speed of light; the lifetime of such a particle is only slightly longer than that of a particle 
at rest.  However, for a particle moving at 99% the speed of light, the lifetime is 
considerably larger than for a resting particle.

The average range prior to decay of a muon moving at 0.5c is

The average range of a muon moving at 0.99c is

This is more than 10 times the range of the slower muon, even though the speed is only 
twice as much.  This is because the faster-moving muon has a much longer lifetime, due 
to time dilation.

Muons are produced in the upper atmosphere by an interaction of solar radiation and 
cosmic rays with air molecules.  We can see that without time dilation, muons from the 
upper atmosphere would not be able to reach the surface.  However, fast-moving muons 
are detected on the surface, thus providing evidence for time dilation and for the theory 
of relativity.

Length Contraction

Suppose now that Bob is in his high-speed train, moving at speed v, traveling in a 
straight line from San Diego to San Francisco.  His clock measures that an amount of 
time t0 has passed, and Bob therefore concludes that the distance between San Diego and 
San Francisco is x = vt0.  Note that t0 is the proper time, but x is not the proper distance, 
since this is a distance measured according to Bob, in a frame where San Francisco and 
San Diego are not at rest.  This is why x does not get a 0 subscript.



The proper distance between the two cities is the distance according to Alice, who is 
having a beer at Porters Pub, at rest with respect to both San Diego and San Francisco. 
She sees Bob ride the train at speed v, but due to time dilation, according to Alice, he 
takes a longer time t = γ t0 to get from one place to the other.  Alice therefore concludes 
that the distance between San Diego and San Francisco is x0 = vt = γ vt0  = γ x.  Again, 
this is the proper distance, because Alice is at rest with respect to the points between 
which the distance is measured.  Thus, if the proper distance is x0, the distance according 
to an observer moving relative to the object at speed v is

Unlike time, which increases compared to the proper time with motion, the distance 
decreases.  It can be shown that only the component of the distance parallel to the 
motion is decreased; perpendicular distances are unaffected.  This is known as length 
contraction.

Example:  A spaceship is flying past an asteroid at a speed of 0.8c.  An observer on the 
asteroid marks the time that elapses between when the nose of the ship passes the 
asteroid, and when the tail of the ship passes, and finds that this time is 1.6 µ s.  What is 
the length of the spaceship according to the crew on board?

The length of the spaceship according to the observer on the asteroid is

This length is contracted compared to the proper length, so the length according to the 
spaceship's crew is longer:

The spaceship is thus 630m long, not just 380m as the observer might think if he didn't 
know about relativity.

If the ship was moving past the asteroid at 0.9c, what length would the observer 
measure?

At 0.9c, the length measured by the observer on the asteroid would be

The observer would see the ship even more contracted than at 0.8c.



Lorentz Transformations

Suppose that Bob passes Alice at a relative speed v, and the moment they pass each 
other, they decide to measure the distance x along Bob's direction of travel from the 
point where they met, and the time t from the moment they met.  In other words, the 
origins of their x-axes and t-axes coincide at the meeting point.  Of course, later on, the 
origins of their x-axes and t-axes are no longer the same.

Suppose Bob observes an event (say, an explosion) at position xB relative to himself, 
after an amount of time tB passed according to his clock.  At what position and time does 
Alice observe this event?

In Bob's frame, Alice is now a distance vtB to the left of Bob, and the event occurs a 
distance xB to the right of Bob.  Thus, Bob sees the distance between the event and Alice 
as vtB + xB:

However, Bob is moving relative to Alice, so this distance is not the proper distance. 
According to Alice, the distance is larger by a factor of γ :

If Bob is moving with velocity v relative to Alice, then Alice is moving with velocity -v 
relative to Bob.  Therefore, we can write the same equation for translating positions of 
events from Alice's frame to Bob's frame, by replacing v with -v.  Note that this doesn't 
change the value of γ, since γ  depends on v2:

Now, if the event occurs at time tB in Bob's frame, at what time does it occur in Alice's 
frame?  We can plug the expression for xA into the equation above and solve for tA:



The coordinates perpendicular to the direction of motion are the same for Bob and for 
Alice.  Thus we have the following “dictionary” for translating coordinates and times of 
events from Bob's frame to Alice's frame and vice versa:

These equations, relating the position and time of an event as measured by one observer 
to that as measured by a different observer, are known as the Lorentz transformation.

Velocity Addition

Suppose there is an object that is moving with speed vB relative to Bob, while Bob is 
moving with speed v relative to Alice.  What is the speed of the object, vA, relative to 
Alice?

Without relativity, this would be simply vA = v + vB.  However, this cannot be true, as 
this kind of equation does not keep the speed of light constant between observers.  We 
now derive the relativistically correct way of adding velocities.

Suppose as the time according to Bob, tB, changes by an amount dtB, the position of the 
object according to Bob, xB, changes by an amount dxB.  The speed according to Bob is 
then simply vB = dxB / dtB.  The speed according to Alice is



Notice that for vB and v small, the denominator is almost 1, and the familiar non-
relativistic relationship, vA = vB + v, is recovered.  What if Bob is observing a ray of 
light, which he sees moving at speed vB = c?  Then,

As required by relativity, if Bob sees the light moving at speed c, so does Alice, even 
though she is moving relative to Bob.

Example:  Alice sees a muon fly by at a speed of 0.98c, but Bob, who is chasing after 
the muon in his high-speed train, sees it moving overtaking him at a speed of only 0.7c. 
What is Bob's speed relative to Alice?

By the velocity addition rule,

Bob is thus moving at a speed of 0.89c.

Generalization of Lorentz transformations, 4-vectors

The Lorentz transformations relate the coordinates and time of an event according to one 
observer to the coordinates and times of the same event according to another observer. 
We can write the time and coordinates of an event as a 4-component object, known as a 
4-vector:

x0 is known as the time component of the 4-vector, and xi (i = 1, 2, 3) are known as the 
space components.  Note that the superscripts simply label which component of the 4-
vector we are talking about; we are not raising anything to any power.  In this notation, 
the components of the 4-vector, which we will denote by the capital letter X, transform 
according to the Lorentz transformation as follows:



We used β = v / c for simplicity of notation.  We will see later on that there are other 
quantities (such as the 4-velocity, the frequency plus wave number, and the energy plus 
momentum) that transform from one observer to another in exactly the same way.  

Consider the following quantity composed from components of a 4-vector:

Note the similarity to the length of a regular 3-vector from the Pythagorean theorem, 
except that there are 4 components rather than 3, and there is an additional minus sign 
between the time component and the space components.

According to observer A, this quantity is equal to

According to observer B, it is equal to

We will show that these two are in fact equal, so that s2 is an absolute quantity, the same 
for all observers.  Start with the expression according to A, and change all the 
coordinates to those in B's frame by using the Lorentz transformation:

Thus the value of s2 is independent of the observer.  Quantities such as this, which are 
the same when measured by any observer, are known as 4-scalars.  Other examples of 4-
scalars include the total number of particles inside an object, proper length and proper 
time (note that while the length and time depend on the observer measuring them, the 
proper length and time are intrinsic properties of the object or process itself, and are thus 
independent of any observer.)



Generalizing to any kind of 4-vector (not just coordinates and time of an event), we 
define the invariant length of the 4-vector in the same way:

If V is a 4-vector, then V2 is a 4-scalar (the same for all observers).  This is exactly 
analogous to the behavior of vectors in 3D with respect to rotation of the coordinate 
system:  the components of the vector change depending on the coordinates chosen, but 
the length of the vector remains the same.

Similarly, we define an invariant dot product between two 4-vectors U and V:

Since U and V are both 4-vectors, they transform the same way under Lorentz 
transformation.  Therefore the dot product above is independent of any observer and is  a 
4-scalar, just like the invariant length of a 4-vector.

We will make use of 4-vectors when we discuss the relativistic description of waves, and 
the relationship between energy, momentum and mass.


