
Lecture 12 Notes:  07 / 19

Simple Magnifier

The simple magnifier consists of a single convergent lens.  If an object is placed slightly 
inside the focal point of the lens, the image becomes much larger, but farther away.  The 
observer can then position the eye so that the image is somewhere within the range of 
normal vision, between the near point and the far point:

The image can be much larger than the object (infinite size if the object is at the focal 
point), but it is also farther away, so it will not necessarily subtend a much bigger angle 
with the eye and appear that much bigger.  However, the lens allows the object to be 
held much closer to the observer than the observer's near point, since the lens will cause 
the virtual image to form beyond the near point; this causes the angle subtended by the 
image to in fact be larger than the angle subtended by the object at the near point.

The angular magnification is defined as the angle subtended by the image, θ, divided 
by the angle, θ0, subtended by the object when it is at the near point without a lens:

The angular magnification will depend on the focal length of the lens, the distance 
between the lens and the object p, the observer's near point pNP, and the distance between 
the lens and the observer's eye d.  It can be calculated in a straightforward manner for 
any combination of these parameters.  Here are some examples:

Example:  A lens with focal length f is held close to the eye (d = 0) and used in such a 
way that the image forms at the eye's near point, pNP.  What is the angular magnification?

We want an image a distance of pNP behind the lens, so q = -pNP.  From this, we can find 
the distance from the lens at which we should position the object, p:



Now we need the size of the image compared to the size of the object.  If the image size 
is h' and the object size is h, then

The angle subtended by the object at the near point, with no lens, is (assuming the object 
is much smaller than the distance to the near point):

When using the lens, the angle subtended by the image is

The angular magnification is the ratio of the two angles:

Note that this is only true if the lens is held very close to the eye, and at such a distance 
from the object that the image forms at the eye's near point.  

For example, suppose we have a magnifier with a focal length of 10cm and an observer 
with a near point of 25cm.  Then, the angular magnification is m = 1 + 2.5 = 3.5.

The image subtends an angle that is 3.5 times larger than the object, and so details 3.5 
times smaller can be resolved.

Example:  An eye with normal distance vision is most relaxed when looking at an 
object at infinity.  If we place the lens so that the image forms at infinity, what is the 
angular magnification?

In order to form an image at infinity, the object is placed at the focal point.  The distance 
between the lens and the eye is now immaterial, since the image is infinitely far away. 
The ray diagram looks like this:



The angle subtended by the image is θ = h / f, where h is the height of the object.  Thus, 
the angular magnification is

For the same eye and lens as above, with pNP = 25cm and f = 10cm, m = 2.5.  Therefore 
if the same lens is used so that the image forms at infinity, the angular magnification is 
2.5, rather than the 3.5 obtained by forming the image at the near point of the eye.

The telescope eyepiece

During last lecture, we discussed telescopes where the image was captured using a 
digital detector such as a charge-coupled device (CCD).  We can instead magnify the 
image so that it can be viewed by the human eye.  This is done by adding an additional 
lens, called the eyepiece.  The eyepiece is basically a simple magnifier which uses the 
image from the telescope's lens or mirror as its object.  It is usually adjusted so that the 
final image is at infinity.  This is a lens diagram of a refracting telescope with an 
eyepiece:

From this diagram, fO tan θ0 = fE tan θ.  For small angles, this becomes

Example:  Suppose we have the 35cm refracting telescope with the objective focal 
length fO = 60cm.  This telescope is diffraction-limited.  We would like an observer 
looking through this telescope to just be able to make out the maximum detail that the 
diffraction limit allows.  Suppose that the observer has a pupil diameter of 5mm, and the 
observer's eyes are also diffraction-limited.  What should the focal length of the eyepiece 
be?



The minimum angle that can be resolved by this telescope is the angle through which 
parallel rays of light diffract after passing through the telescope's aperture:

Here, aT is the diameter of the telescope aperture (the objective lens).  The minimum 
angle that can be resolved by the eye is similarly

Here, aE is the diameter of the eye's aperture (the pupil).  The telescope can resolve 
smaller angles, since its aperture is bigger.  We want to magnify the smallest angle that 
the telescope can resolve so that it is equal to the smallest angle that the eye can resolve, 
so that the observer can see it.  Thus, the magnification we want is

Therefore the optimal focal length of the eyepiece is

This gives an angular magnification of 70X.  At this magnification, the observer's eye 
can just make out details at the telescope's diffraction limit.  Increasing the 
magnification further would result in a larger, but blurrier, image.

The compound microscope

For high magnifications, the simple magnifier suffers from the problem of lens 
aberration.  The compound microscope is a system of two lenses that corrects the 
aberration.  It looks superficially somewhat similar to a refracting telescope with an 
eyepiece, except that the object is placed close to the focal point rather than far away:



The focus of the microscope is typically adjusted so that the image at q falls on the focal 
point of the eyepiece.  This creates a final image at infinity, allowing the observer's eye 
to be fully relaxed when viewing the image.

Example:  A microscope has a length L = 15cm, an objective with a focal length of 
1.2cm and an eyepiece with a focal length of 0.8cm.  What is its magnification compared 
to a normal eye with a near point of 25cm?

First we will find the distance between the object and the objective lens.  The distance 
should be such that the intermediate image falls on the focal point of the eyepiece:  
q = L - fE = 15cm - 0.8cm = 14.2cm.  This gives

Referring to the ray diagram above, we see that the objective creates an inverted image 
of size h' = (q / p)h = (14.2 / 1.31)h = 10.8h.  For a very small object, the angle 
subtended by this image on the eyepiece can be estimated as θ = h' / fE = 10.8h / fE.  This 
is the same as the angle subtended by the final image on the eye.

Now if the object was simply viewed with the eye at the near point, it would subtend an 
angle of θ0 = h / pNP.  Thus, the angular magnification of this microscope is

Thus, when viewed through this microscope, objects appear about 340 times as big as 
when viewed with the eye at the near point.

Most microscopes have several objectives, labeled, for example, 300X, or 2000X. 
These objectives have different focal lengths, and thus give different magnifications. 
The nominal magnification of the objective is given as the magnification compared to an 
eye with a near point of 25cm, with the microscope adjusted so that the final image is at 
infinity.

The microscope's resolution is limited by the wavelength of light used.  One cannot form 
an image of an object that is smaller than the wavelength of light used to illuminate it, 
since the light waves will diffract around such a small object, rather than passing 
through it or reflecting off it as shown in ray diagrams.  So, for example, a microscope 
that operates with 500nm light will not be able to resolve objects smaller than 500nm. 
Magnifying the image in an attempt to get better resolution will simply result in a more 
blurry image.



The interferometer

The interferometer has many uses, most of which involve being able to measure a 
change in light path length or phase to a great degree of precision.  The Michelson 
interferometer looks like this:

The light is emitted from a coherent source, so that initially all the EM waves are in 
phase with each other.  The light reaches a beam splitter, which is a half-silvered mirror 
that reflects approximately half the light to Arm 1 and allows the other half to pass 
through to Arm 2.    The light is reflected by mirrors at the end of each arm, and some of 
it is reflected or transmitted by the beam splitter towards the view port.

If the phase shift experienced by light along Arm 1 and Arm 2 is exactly the same or 
different by an even multiple of π, then the two beams reaching the view port will 
interfere constructively, resulting in a bright spot.  If the phase shifts are different by an 
odd multiple of π, then we get destructive interference, resulting in a dark spot.  The 
difference between the two cases corresponds to a change in distance of only half a 
wavelength, so any change in the length of one of the arms, or in any other factor that 
causes the light along one of the arms to accumulate more or less phase, can be detected 
to a great degree of precision.

Typically, one of the mirrors is slightly angled, so that the path length difference changes 
with position on the mirror.  This results in a pattern of light and dark bands from light 
coming from different parts of the mirror.  These bands are called fringes.  If one of the 
mirrors is moved back slowly, so the path along that arm increases, the fringes move 
across the mirror.  The observer can count the number of fringes that have gone by, and 
determine the distance by which the length of the arm has changed.



Example:  A small interferometer's two arms each have a length of 0.25m.  The light 
source has a wavelength of 500nm.  Both arms are held in a vacuum.  The chamber 
containing one of the arms is slowly filled up with helium, until the pressure in the 
chamber reaches 1 atmosphere.  If the index of refraction of helium at 1 atmosphere is 
1.000036, how many fringes move by the view port as helium is added to the chamber?

Suppose that, initially, light paths along both arms are identical, so light goes through 
the same number of wavelengths along each arm.  The number of wavelengths along 
each path is 0.50m / 500nm = 106.

After the helium is added, the wavelength of light in that chamber decreases by a factor 
of 1.000036.  Therefore, the number of wavelengths along this path increases by a factor 
of 1.000036, and is now 1,000,036.  The difference between this and the other path, 
which remains in vacuum, is 36 wavelengths.  Thus, 36 fringes go by.

The Michelson-Morley experiment

Maxwell's equations predict a universal speed of light, independent of the observer.  For 
a long time, people did not believe this conclusion, and assumed that Maxwell's 
equations were not entirely correct.  By analogy with the theory of sound, where waves 
propagate through air and the wave equation is only valid in the frame where the air is at 
rest, 19th century physicists assumed that there was a medium known as the ether 
through which light waves propagated.  Maxwell's equations would, then, be valid only 
in the frame where the ether is at rest.

The deviations from Maxwell's equations would allow an observer moving, say, in the x 
direction through the “ether”, to see light coming from the x direction go faster, and light 
coming up from behind go slower, as expected from everyday experience.  We now 
know this is not true, of course, but most 19th century physicists assumed it was true.

If such an observer-dependent effect did occur, it could be measured by using the 
Michelson interferometer.  Suppose arm 1 was oriented in the observer's direction of 
travel through the ether.  Due to the difference in the speed of light and the motion of the 
apparatus relative to the “ether”, light traveling down arm 1 and back would accumulate 
a different phase than light traveling along arm 2.  The apparatus could now be rotated 
until arm 2 was oriented in the direction of motion.  This would cause the phase 
difference between the two paths to become flipped, and as a result, fringes would move 
as the apparatus was rotated.



Since the Earth moves around the Sun, the observer's motion would change depending 
on time of year.  Thus, if the ether hypothesis was true, the results of the Michelson-
Morley experiment would vary depending on the season.

Of course, no such variation was found, and in fact the fringes didn't move at all, no 
matter what time of year it was.  This implied that the speed of light was in fact the same 
in all directions for all observers.  Other experiments confirmed these findings. 
Eventually, Einstein began with the assumption that Maxwell's equations, rather than our 
everyday experience with relative speeds, were correct, and derived his theory of 
relativity.

Detailed treatment of the Michelson-Morley experiment is left as a homework 
assignment.


