
Lecture 10 Notes:  07 / 14

Reflections and thin-film interference

Instead of sending light through slits to interfere with itself, we can get interference 
between a source of light and its reflection, or two different reflections.  First, we must 
understand how the phase of electromagnetic waves changes when they are reflected 
from an interface.

Recall that for waves on a string, when a wave was reflected from an interface with a 
string that had a slower wave speed, the amplitude of the reflected wave was inverted. 
This corresponds to a phase change of π.  When the incident wave encountered an 
interface with a string that had a higher wave speed, the amplitude of the reflected wave 
had the same sign as that of the incident wave.  This corresponds to no phase change.

Electromagnetic waves behave the same way.  When they reflect from a material with a 
higher index of refraction (lower wave speed) than the medium the wave is traveling in, 
they change phase by π, but when they reflect from a material with a lower index of 
refraction, they do not change phase.  The part of the wave that is transmitted into the 
new material never changes phase.

Example:  A plane wave is incident on a thin film of material with n = 1.36, with air on 
both sides of the film.  The film is 1.00µm thick.  The direction of travel of the plane 
wave is normal to the film.  For what wavelengths of the plane wave is the reflection 
enhanced by constructive interference?  For what wavelengths is the reflection 
suppressed?  Which of these wavelengths are visible light?

Let the thickness of the film be d = 1.00µm.  Light that is reflected off the front surface 
of the film undergoes a phase change of π.  Light that is reflected off the back surface of 
the film undergoes no phase change, but it has an additional distance of 2.00µm to 
travel.  Over this distance, the light accumulates a phase at a rate of 2π per wavelength, 
except the wavelength in the material is λ0 / n, where λ0 is the wavelength of the incident 
wave in air.  This because the wave number k = ω / v is inversely proportional to the 



wave speed, and thus proportional to the index of refraction (since ω  is the same on 
both sides).  λ = 2π / k is inversely proportional to k, and therefore is inversely 
proportional to the index of refraction.

Thus the additional phase accumulated by the wave that reflects off the back surface, 
due to its greater traveling distance, is 4πd / λ = 4πnd / λ0.

This is a schematic diagram of the situation.  The collinear rays have been separated a 
bit to show which one is which.

The difference in phase between the two rays is 4πnd / λ0 - π.  For constructive 
interference, we must have the difference in phase equal to an even multiple of π, while 
for destructive interference, it must be an odd multiple of π:

Simplifying and solving for λ0, we obtain

Running through a few values of j, we get constructive interference for wavelengths of
5440nm, 1813nm, 1088nm, 777nm, 605nm, 494nm, 418nm, 362nm, 320nm, etc.  The 
first four values are near infrared, while the last two and the following ones are 
ultraviolet; the visible wavelengths for which we see constructive interference are 605, 
494 and 418 nm.  We see destructive interference for 2720, 1360, 907, 680, 554, 453, 
389 and 340 nm; of those, 680, 554, 453 and possibly 389nm are visible.



If white light, which is a mixture of all wavelengths, is incident on this film, the 
reflection will be bright in the 605, 494 and 418nm visible bands, and dark in the 
intermediate parts of the spectrum.  The combination of light with these three 
wavelengths will produce a specific color.  The wavelengths for which there is 
constructive interference will depend on the thickness d of the film, and so will the color 
of the reflected light.  This explains the multicolored appearance of soap bubbles and oil 
slicks on the surface of the water:  the thickness of the film making up the wall of the 
soap bubble or the oil floating on the water varies from point to point, and so does the 
color of the reflected light.

In case you want to know, the color reflected from this particular thickness of film 
would look approximately like this.  This was done by generating the spectrum of the 
reflection (intensity as a function of wavelength) and then using a spectrum to RGB 
converter.

If the thickness of the film was instead 500nm, the color would look like this:

Example:  Light of wavelength λ0 = 500nm is reflected off a film of oil on water.  The 
oil has an index of refraction of 1.20, while the water has an index of refraction of 1.33. 
If the thickness of the oil layer is 600 nm, at what angles of reflection is there 
constructive interference?

Now there is a phase change of π when the light reflects off both interfaces, so that 
phase change will be the same for both rays and will cancel.  However, there will be 
additional path differences to take into account due to the geometry:



The beam reflected off the top of the oil film travels an additional distance x1 through the 
air, compared to the other beam.  However, the beam reflected off the oil-water interface 
travels an additional distance x2 through the oil.  To determine x1, look at a close-up of a 
part of the diagram and draw some additional lines:

From this diagram, x1 = 2a sin θ1.  a is given by a / d = tan θ2, or a = d tan θ2. 
Therefore, x1 = 2d sin θ1 tan θ2.

Next, we determine x2.  This is just the total path length of the ray that enters the oil and 
is reflected by the surface of the water.  If we label one side of the path as h (see diagram 
above), then x2 = 2h.  h is related to d by d = h cos θ2, so h = d / cos θ2.  Therefore,
x2 = 2d / cos θ2.

The phase accumulated by the first ray is ∆θ1 = 2πx1 / λ0.  The phase accumulated by the 
second ray is ∆θ1 = 2πx2 / λ = 2πnx2 / λ0, where n is the index of refraction of the oil 
(the factor of n appears because the wavelength is decreased by a factor of the index of 
refraction).  Therefore the difference in phase is

Now we use Snell's law.  This tells us that sinθ2  = sin θ1 / n.  Writing the cosine in terms 
of sine as well, we obtain

To get constructive interference, the phase difference must be an even multiple of π:



Simplifying and solving for the angle gives

Choosing j = 0 or j = 1 gives the sine as greater than one, while choosing j = 3 or higher 
gives a negative number under the square root.  Only j = 2 works.  Thus, the only angle 
for which we get constructive interference is

Thus, with this thickness of film and wavelength of light, we only get total constructive 
interference if the incident angle is approximately 60 degrees to the surface normal.

Single-slit diffraction

Diffraction is the spreading of light as it passes through a small opening or around a 
small obstacle.  It is not possible for a beam of electromagnetic waves to have a very 
sharp edge (sharp compared to the scale of the wavelength) as such a wave configuration 
would not be a solution to the wave equation.

We will first consider the spreading of light emerging through an opening.  For the 
double-slit experiment, we assumed that the light simply went from the opening in all 
directions; this is true if the opening is very small.  For larger openings, the spreading 
will not be so drastic.

Consider an opening of size a, running from y = -a / 2 to y = a / 2.  Consider the light 
coming from point y in the opening at an angle θ  from the normal to the screen:



The path length difference between this beam, A and the beam B, which emerges from 
the center of the opening, is y sin θ.  The phase difference compared to the central beam 
is thus  2π y sin θ / λ.  The total value the wave on the screen is proportional to the sum 
of the contributions for all different values of y, from -a / 2 to a / 2:

The electric field at angle θ  thus oscillates with an amplitude proportional to

The intensity of light is proportional to the square of the amplitude:

Since this is a proportionality relationship, let us define the intensity such that the 
intensity at the center is zero.  The limit of this function at sin θ = 0 is π2 a2 / λ2, so we 
will simply divide the function by this quantity.  We'll call this the relative intensity 
(intensity relative to the intensity directly opposite the center of the hole).

For a hole the size of the wavelength, a = λ, the intensity as a function of sin θ  looks 
like this:

The light is peaked to the front of the hole, but a lot of it goes out sideways, as we 
expect, since the size of the opening is comparable to the wavelength.



Now we will try a hole 3 wavelengths across.  The graph now looks like this:

There is now a sharp forward peak, and additional diffraction peaks have developed to 
the sides of the forward peak.  Finally, try a hole that is 10 wavelengths across:

The central peak is now even sharper.  The diffraction peaks are smaller and closer 
together.  In the limit that the hole becomes much larger than the wavelength, the peak 
becomes infinitely sharp, and all the light goes precisely forward through the hole.  This 
is why we can't see around the corner of a door; the door is much, much larger than the 
wavelength of light, so all light that enters the door goes straight through, without 
diffracting off to the side by any measurable amount.  Sound, however, has a wavelength 
comparable to the size of the door, so it quite readily diffracts off to the side.  We can 
thus hear sounds behind an open door even if we cannot see the source of the sound.

The intensity is exactly zero when

Note that n = 0 doesn't count since that's the location of the central peak, and the limit of 
the intensity there is finite.  Simplifying this expression a bit,



Example:  A laser with λ = 620nm  produces a beam 1mm across.  The beam is 
projected on a wall 20 meters away.  The beam spreads due to diffraction.  What is the 
diameter of the beam's central peak when it hits the wall?

Treat the laser beam as light going through a hole 1mm across.  The beam will thus have 
a central peak, and some diffraction rings around it (they are rings because the beam is 
symmetric about the central axis).  The central peak is delineated by the first diffraction 
minimum, which occurs when a sin θ = λ.  Let D be the diameter of the beam at the 
wall.  Then,

In just 20 meters, the laser beam has spread to more than 12 times its original diameter. 
This illustrates the impossibility of sending a narrow beam over a long distance without 
the beam spreading out due to diffraction.

It turns out that coherent light encountering a small obstacle (such as a hair) will diffract 
around it, producing much the same diffraction pattern as with light going through a 
small opening.

Example:  Suppose we illuminate a hair with laser light having a wavelength of 620 nm. 
The diffraction pattern is projected onto a screen 2 meters away.  The difference between 
the first diffraction minimum on the left of the central peak and the first diffraction 
minimum on the right is measured to be 0.5cm.  What is the diameter of the hair?

The distance from the center to the nearest diffraction minimum is 0.5 / 2 = 0.25cm. 
This corresponds to n = 1.  The angle is

(since the angle is very small, it is almost exactly equal to the distance between the two 
points divided by the distance from the screen to the source, and the sine of the angle is 
almost exactly equal to the angle itself.)

Now we solve for a:

The hair is thus half a millimeter across.



Diffraction grating

A diffraction grating is a commonly used device consisting of a large number of evenly-
spaced interference slits.  The individual slits are narrow compared to the separation. 
The diffraction grating acts much like the double-slit interference apparatus, with 
constructive interference arising when the path length distances from all the slits are 
different from each other by a multiple of the wavelength:

The rays shown illustrate points of constructive interference.  It can be demonstrated that 
for small diffraction angles and a screen sufficiently far away, the conditions for 
constructive and destructive interference are precisely the same as for the double-slit 
experiment:

Here, d is the slit separation.

Example:  450nm light is sent through a diffraction grating to a screen 5 meters away. 
The separation between the diffraction peaks on the screen is 6.5cm.  How many slits 
per centimeter does the diffraction grating have?

The grating thus has 1cm / d = 310 slits per centimeter.



In reality, the slits in the diffraction grating have a finite size, so we get both diffraction 
between the slits and single-slit diffraction from each individual slit.  The resulting 
pattern looks something like this:

This is a negative, with black representing bright light and white representing darkness. 
There is a bright, wide central cluster of diffraction peaks.  The individual diffraction 
peaks within the clusters are caused by diffraction between the different slits, while the 
clusters themselves are peaks resulting from single-slit diffraction.  Because the 
separation of diffraction peaks is inversely proportional to the size of the feature on the 
screen they correspond to, and the slits are farther from each other than they are wide, 
the multiple-slit pattern is closer spaced than the single-slit pattern.

Example:  450nm light is sent through a diffraction grating to a screen 50 cm away.  The 
separation between the diffraction fringes on the screen is 0.40cm.  The separation 
between the middle of the large central cluster and the first spot where the diffraction 
peaks vanish is 5.0cm.  How far apart are the slits separated?  How many slits per 
centimeter is that?  What is the width of each individual slit?

Let ∆x1 be the separation between the diffraction fringes on the screen and ∆x2 be the 
separation between the center of the pattern and the first spot where the fringes 
disappear:

We use many-slit diffraction to determine the separation between the slits:

The slits are separated by 56.3 microns.  That's about 178 slits per centimeter.

Use single-slit diffraction to determine the width of each slit:

The slits are 4.5 microns across.



We have seen that diffraction is quite useful for measuring the size of small objects.  The 
smaller the wavelength of electromagnetic radiation used, the smaller the size of objects 
that can be usefully measured.  Since x-rays have wavelengths suitable to the size of 
molecules, x-ray diffraction is often used to determine the structure of crystals.  

If the crystal is made of complicated things such as protein molecules, the resulting 
pattern will be complicated as well, but the equations describing the interference that 
produces the pattern can be reversed, and the detailed structure of the molecule can be 
calculated from the pattern.  This process is actually not that different from what we did 
above to calculate the slit separation and the width of each slit.


