Lecture 1 Notes: 06/ 27

The first part of this class will primarily covesallating systems (harmonic oscillators
and waves).

These systems are very common in nature - a sydisggtaced from equilibrium by a
small amount will tend to oscillate harmonicallpless the friction is too high for
oscillations to take place.

Mass on a spring and Hooke's Law

Simple system: Mass on a spring. Consider agphat has a relaxed lendth
attached to a mass on a frictionless table:

Let x be the distance by which the spring is stretchratbmpressed from its relaxed
length. It's positive if the spring is stretchadd negative if it is compressed.xlis
sufficiently small (compared tb), we find that the force is proportional to the
displacement:

F=-kx

This is Hooke's law. The sign is negative beca#ube mass is displaced to the right,
the force tries to return it back to the left, todsathe equilibrium position, and vice
versa. For this reason, the force is called&string force. The proportionality
constant is called thgring constant, and measures the stiffness of the spring.

Potential energy of the spring: Sirfee -dU / dx, the potential energy is
U= l!.-;rf
9

The total energy is the kinetic energy plus theeptal energy:
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Systems that obey Hooke's Law are calladmonic oscillators.



Why Hooke's Law?

Why does the spring (and many other systems irregtollow such a simple force law?
There is a mathematical reason.

In general, the forcE is a complicated function of the displacemenit the
equilibrium positionx = 0, the force is zero. For small displacements fegpuilibrium,
we can fit anyF with a polynomial inx (this is known as a Taylor series, you should
have seen it in your calculus class.)

F=A+Bx+ Cx+Dx3+ ...
SinceF(0) = 0 (equilibrium),A= 0. Therefore,
F=Bx+ Cx*+Dx3+ ...

Now, assume that the displacemeig small. If that is the case, higher powers wiill
be smaller still, and we can neglect them to a ggm@oximation. We therefore end up
with the approximate force

F = Bx

Now if B is positive, the force will push in the directiohtbe displacement, and the
mass will accelerate away from the equilibrium poinhis is calledinstable
equilibrium (an example is a ball balanced on top of a hifi)B is negative, the force
will try restore the system to the equilibrium poiand we have stable equilibrium.
This is the case we're interested in, so we wikeranegative and definB = -k, so that
k is positive. This gives us Hooke's Law:

F = -kx

This discussion makes clear a few points:
(1)Hooke's Law is an approximation, there are abiwas from higher powers af
(2) If the displacement becomes big enough, Hodlkasis no longer valid
(3) It's fairly universal - many systems near efuilim obey Hooke's Law



Example of how Hooke's Law arises for a simple sysin:

Consider a chargegtfree to move in on a line segment of lendthtPapped between
two other chargesatthat are held in place at the ends of the segment:
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The equilibrium position is clearly right in thedlle. In general, the force on the
central charge is the sum of the electrostaticlsppgiforces from the charges on both

sides:
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This, of course, looks nothing like Hooke's Lawowtver, forx << L, we can use the
binomial theorem (or a Taylor expansion) as follows
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Plugging this into the equation for the force, vistain

k. rf 2x 2x
P (%) - (7))

4k, q° _
—

Fe

This is exactly the same as Hooke's Law, with &cafe “spring constant” of
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Mass Suspended from a Spring:

Consider a slightly more complicated spring systehere the mass hangs under
gravity:

kz

mg
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The equilibrium position is one where the net fasceero, so

g
=) — _Ef_
This means the spring constant can be measurectagunng how much the spring
stretches with a given mass. Suppose a 0.1kg str@$shes the spring by 5 cm. Then,

the spring constant is

1 0.1kg % 9.8m /s -
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Hooke's Law: Now that we've found the new equilibr position, let us define= z-z,
so thatx measures the displacement from the new equilibrilngging this into our
equation for the force:

T
F=—k:t+mg=—kiex+z)+mg=—kzr— .;.';—_J +mg = —kx

F=—kr

The spring constant is thus unchanged. The ofégtethat a constant force like gravity
has is shifting the equilibrium position.



We can look at the potential energy of this systasnyell:
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The last term is just a constant. Recall thatragldi constant to the potential energy
doesn't change the physics, so we can simply th@fast term and get

Kinematics of Harmonic Oscillators

Now that we know how to get the force law for syséenear equilibrium, we can write
down and solve the equations of motion. From Naisteecond law,

T = F = _;I-:f.
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This is adifferential equation - an equation relatingto its derivatives. We don't expect
you to know how to solve this kind of equation engral (it's covered in a second-year
math class), but this one is simple enough thatameeasily guess the answer. What
kind of function gives something proportional tonns itself when you take the
derivative twice? A sine or a cosine. Therefare,guess the following solution:

rl(t) = Acos(wt + ¢)

dx . .
(t) = — = —Awsin{wt + ¢)
ot
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alt) = — = —Aw cos(wt + @)

dt



Plug this into our equation:

— mAwcos(wt + ¢) = —kAcos(wt + &)
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The constantd and gare unconstrainedA is known as thamplitude, and gives the
maximum displacement from equilibrium achieved liy $ystem. In reality, it should
be small enough that Hooke's Law is still validhet maximum displacementy is
called thephase angle, and determines what the system is doing=af. For example,
if the system starts at= A, the phase angle is zero. If the system starsdl, then
Q=172

Analogy to circular motion: Consider a particle moving at a constant spemtbah
circular orbit of radiug\, starting at an angl@ and moving with angular frequency of

radians / second:
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The horizontal displacement of the mass from tigirgrx is then given by
r = Acos(wt + ()

This is exactly the same equation as for the haremmstillator. For this reason, we use
terms such as “phase angle” and “angular frequery'towed from periodic circular
motion.



Theperiod of the motion is the amount of time it takes thisteam to oscillate through a
complete cycle. In terms of angle, that's the titntekes the system to go througir 2
radians. The amount of time taken to do that is
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Thefrequency of the motion is the number of complete oscillasidhe system goes
through per second. It is given by

i

T =

This gives yet another method of measuring thengmonstant. Suppose we have a 1kg
mass oscillating on a spring with a frequency b1 What is the spring constant?

k= (2m)%(1s7 )2 (1kg) = 39.5kg/ s
Conservation of energy Does our solution conserve energy? Let's check:
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So, yes, the energy is conserved, and is equatemfial energy at maximum
displacement. This makes sense, since the padittanoving at the turning point, so
kinetic energy is zero there, and the total enesggual to the potential energy.



Sample problem 1:

A mass is suspended from a spring at equilibriuemnirelevator moving down at 1 m/s.
The mass has = 1 kg, while the spring hds= 100 kg/$. The elevator comes to a
sudden stop. What is the amplitude of the mass#ations after the elevator stops?

At first, the mass keeps moving at 1 m/s due tdimelt is at the equilibrium position.
So, its energy is
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The amplitude of oscillations is thus 10 cm.

Sample problem 2
What is the speed of the harmonic oscillator whendisplacement from equilibrium is
1/4 the amplitude, compared to the maximum speed?

The speed at 1/4 the amplitude can be obtained ¢émrservation of energy:
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Sample problem 3:

Suppose we have a 1kg mass attached to a spring wil0Gkg/s>. The mass slides on
a horizontal table with a coefficient of kinetiaction p = 0.2. The mass is released
from a displacement= 0.1m. How far to the other side of the equilibripoint does it
get before it stops?

This is a problem where some of the energy isttoatconstant frictional force. Recall
that the energy lost is simply frictional force ésdistance traveled, so the total
remaining energy is
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When the mass stops= 0. So, “conservation” of energy becomes
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= (L0196 £ L0804 = —0.0608m = —6.08cm

We picked the negative sign since the mass stopiseoother side of the equilibrium
point; the positive sign simply gives= 10cm, the initial position of the mass (where it
Is indeed at rest).



