Physics 1A, Lecture 8: Friction and Forces in Circular Motion

The quiz will commence at 9:33 AM.

Key Questions: (Discuss with neighbors before quiz)

- 1) How is friction related to the normal force?
- 2) What are the units for the coefficient of static friction?
- 3) What is a banked curve?
- 4) What might happen if you go too slowly around a banked curve? Too fast?

- How is friction related to the normal force?
- A) Friction is always greater than the normal force
- B) Friction is directly proportional to the normal force
- C) Friction is inversely proportional to the normal force
- D) Friction has nothing to do with the normal force because they are perpendicular to each other
- E) Friction is the integral of the normal force

 What are the units for the coefficient of static friction?

- A) kg m/s
- B) kg/s^2
- C) meters
- D) Newtons=kg m/s²
- E) It is dimensionless

What is a banked curve?

- A) A curve with a helical shape
- B) A curve with friction
- C) A curve where the road is on an incline
- D) A curve that makes a half circle
- E) A curve where the net force points inwards

 What might happen if you go too slowly around a slippery banked curve? Too fast?

- A) Too slow slide up, too fast slide down
- B) Too slow slide down, too fast slide up
- C) Too slow nothing, too fast slide down
- D) Too slow slide down, too fast nothing
- E) Too slow nothing, too fast slide up

Announcements

- Extra office hours tonight:
 - Mayer 5623 from 5-6pm
- Homework #3 is due tomorrow by 1pm
- Quiz #2 is on Thursday, will cover:
 - Newton's Laws
 - Friction
 - Circular motion
 - Drag force
 - Cumulative material from last section
- Come pick up your old homework after class
- Haven't posted grades yet. I will try to do it Friday.

Anonymous poll (I will keep this histogram hidden)

I think clicker questions are:

- A) Totally useful, I would never want to take a physics class without them
- B) Fun and useful, but we probably do too many of them
- C) Silly and take away too much time from lecture
- D) Make me depressed about what I don't know and stressed out during lecture
- E) I'm upset that you made me buy a clicker and expect me to come to class

Predict Motion

Attached objects and pulleys

Attwood machine

Attwood machine

Attwood machine

Sticking

Slipping

(static friction)

(kinetic friction)

Friction!

Sticking

(static friction)

Friction force balances forces in opposite direction → No motion!

$$f_s \le \mu_s F_N$$

Slipping

(kinetic friction)

Friction force
Is less than the
forces in opposite
direction → Motion!

$$f_k = \mu_k F_N$$

$$0 \le \mu \le 1$$

Just a number, depends on the two materials that are in contact

Friction!

Sticking (static friction)

Points in the direction opposite the motion that would happen in friction was not there.

Slipping (kinetic friction)

Points in the direction opposite the motion

Clicker Question 8-1

A box is being pushed up against a wall. The force from the hand is at a minimum so that the box does not slide *down* the wall. Which vector shows the direction that the friction force is pointing?

Clicker Question 8-2

A box is being pushed up against a wall. The force from the hand is at a maximum so that the box does not slide *up* the wall. Which vector shows the direction that the friction force is pointing?

Practice with FBDs

Force is a minimum so that box does not move:

Force is a maximum so that box does not move:

You push box 1 that has box 2 m_2 stacked on top of it. There is friction everywhere. Box 1 moves but the m_1 boxes stay attached. m_1

 μ_k between box and table m_2 μ_s between boxes Write friction force in terms of m_1 μ and masses. m_1

Clicker Question 8-3

What is the direction of friction when you take a step?

Clicker Question 8-4

What is the direction of friction for a wheel that is rolling without slipping?

Practice with FBDs

If tension in a rope is always constant, how can anyone ever win a tug-of-war?

Practice with FBDs

If tension in a rope is always constant, how can anyone ever win a tug-of-war?

• A box slides down a ramp with friction. Find acceleration down the ramp in terms of m and μ .

$$f_k = \mu_k F_N$$
$$f_k = \mu_k mg \cos \theta$$

$$\sum_{mg\sin\theta} F_x = ma_x$$

$$a_x = g\sin\theta - \mu_k g\cos\theta$$

Homework

- Reading quiz tomorrow
- Homework #3 due tomorrow by 1pm
- Extra problems are posted (also solutions to even numbered problems)

Office hours today at 5pm