

The quiz will commence at 9:33 AM.

Key Questions: (Discuss with neighbors before quiz)

- 1) What are the units of angular velocity?
- 2) Is angular velocity positive or negative when rotation is counterclockwise?
- 3) How do you convert from angular velocity to tangential velocity?
- 4) What is rotational kinetic energy?
- 5) What measurements of an object determine its moment of inertia?

What are the units of angular velocity?

- A) m/s
- B) radians/s²
- C) $1/s^2$
- D) radians/s
- E) 1/s

 Is angular velocity positive or negative when rotation is counterclockwise?

A) positive

B) negative

 How do you convert from angular velocity to tangential velocity?

A)
$$v=1/2 \omega R^2$$

B)
$$v = \omega R$$

C)
$$v=R/\omega$$

D)
$$v=R/\omega^2$$

E)
$$v=R\omega^2$$

What is rotational kinetic energy?

- A) $\frac{1}{2}$ m v^2
- B) $\frac{1}{2}$ I ω^2
- C) $\frac{1}{2}$ m ω^2
- D) $\frac{1}{2}$ m v^2 r
- E) $\frac{1}{2}$ m v^2/r

 What measurements of an object usually determine its moment of inertia?

- A) radius, mass
- B) volume, mass
- C) volume, density
- D) center of mass
- E) mass, velocity

Announcements

- Homework due tomorrow by 4pm
- Office hours today at 5pm
- Today is the deadline to drop with a W
- Fill out survey online
- No quiz this week! Just a Final on Friday.

Calculating your grade (as Anat rolls her eyes at you...)

- Points already earned:
 - 0.35 x (Final quiz grade)
 - 0.2 x (Homework grade) (all of them are out of 3)
 - 0.1 x (Reading quiz grade)
 - 0.05 x (Clicker grade)
- Final Grade cutoffs (that might be lowered):
 - A ... above 88%
 - B ... above 75%
 - C ... above 63%
 - D ... above 50%
- Take the cutoff that you want to reach, subtract points already earned, divide by 0.35 ... That is what you need to get on the Final to guarantee that grade.

Anonymous poll

How awesome was Evan so far?

- A) Who is Evan?
- B) I only saw him at the quizzes.
- C) Evan was ok, but I didn't enjoy getting help from him.
- D) Evan was ok, but I didn't need much extra help.
- E) Evan was super helpful.

Anonymous poll

 Do you think having the worksheet homework assignment was a good idea?

- A) No.
- B) Yes, but it shouldn't have been for credit.
- C) Yes.

Example problem

• A bullet with mass m and velocity v_0 imbeds in a block of wood with mass M. If the coefficient of kinetic friction is μ , how far will the block of wood move across a horizontal floor before it comes to rest?

A cart is moving to the right with a constant velocity when a mass is dropped vertically onto it. What happens to the velocity of the cart?

- A) It will slow down
- B) It will speed up
- C) It will stay the same

A cart with a mass on it is moving to the right with a constant velocity when it drives over a ditch. It releases the mass into the ditch through a trap door. What happens to the velocity of the cart?

A) It will slow down

B) It will speed up

C) It will stay the same

A cart is moving to the right with a constant velocity when a man throws the mass off the back of the cart. What happens to the velocity of the cart?

- A) It will slow down
- B) It will speed up
- C) It will stay the same

A cart is moving to the right with a constant velocity when a man throws the mass off the *front* of the cart. What happens to the velocity of the cart?

- A) It will slow down
- B) It will speed up
- C) It will stay the same
- D) It reverses direction

2D collisions

Conserve momentum in x and y separately.

$$m_1 \vec{v}_{(1xi)} + m_2 \vec{v}_{(2xi)} = m_1 \vec{v}_{(1xf)} + m_2 \vec{v}_{(2xf)}$$

$$m_1 \vec{v}_{(1yi)} + m_2 \vec{v}_{(2yi)} = m_1 \vec{v}_{(1yf)} + m_2 \vec{v}_{(2yf)}$$

(a) Before the collision

(b) After the collision

 Which of the following FINAL pictures of an elastic collision is not possible?

Center of mass

$$x_{CM} = \frac{Mx + m(L - x)}{M + m}$$

Rigid objects:

 Assume gravity acts only on the COM

Collisions:

 Without external forces, velocity of center of mass is constant

Rotational motion deja vu

Linear motion

Rotational motion

displacement (Δx)

angular displacement ($\Delta\theta$)

velocity (v)

angular velocity (ω)

acceleration (a)

angular acceleration (α)

mass (m)

moment of inertia (I)

force (F)

torque (τ)

F=ma

 $\tau = I \alpha$

linear kinetic energy

rotational kinetic energy

linear momentum (p)

angular momentum (L)

F=dp/dt

 $\tau = dL/dt$

- angular displacement
- angular velocity

$$\omega = \frac{\Delta \theta}{\Delta t}$$

angular acceleration

$$\alpha = \frac{\Delta\omega}{\Delta t}$$

1 rotation = 2π radians

Positive rotation

- Define a pivot point
- Determine sign of ω

Negative rotation

- Define a pivot point
- Determine sign of ω

arc length

$$s = R\theta$$

tangential velocity

$$v_T = R\omega$$

tangential acceleration

$$a_T = R\alpha$$

Playground accidents

 Example: A boy is riding on a merry-go-round with a radius of 1 m at an angular speed of 12 rotations per minute. What is the speed that he goes flying off if he accidentally lets go?

$$12 \text{ rpm} \times \frac{2\pi}{1 \text{ rotation}} \times \frac{1 \text{ min}}{60 \text{ s}} = 1.25 \text{ radians/s}$$

$$v = R\omega = 1.25 \text{ m/s}$$

Three accelerations!

centripetal acceleration

$$a_c = \frac{v^2}{r}$$

tangential acceleration

$$a_T = R\alpha$$

angular acceleration

$$\alpha = \frac{\Delta\omega}{\Delta t}$$

$$\omega = \frac{d\theta}{dt}$$

$$\alpha = \frac{d\omega}{dt}$$

angular displacement, θ(t)

angular velocity, $\omega(t)$

constant angular acceleration, α

$$\theta = \int \omega \cdot dt$$

$$\theta_f = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2$$

$$\omega = \int \alpha \cdot dt$$
$$\omega_f = \omega_i + \alpha t$$

Linear motion

$x_f = x_0 + v_{0x}t + \frac{1}{2}a_xt^2$

$$v_x = v_{0x} + a_x t$$

$$x_f = x_0 + \frac{1}{2}(v_x + v_{0x})t$$

$$v_x^2 = v_{0x}^2 + 2a_x \Delta x$$

Rotational motion

$$\theta_f = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2$$

$$\omega_f = \omega_i + \alpha t$$

$$\theta_f = \theta_i + \frac{1}{2}(\omega_f + \omega_i)t$$

$$\omega_f^2 = \omega_i^2 + 2\alpha\Delta\theta$$

Which kinematics equation should you use?

A record initially spins at 78 revolutions per minute (rpm) in the counter- clockwise direction. This decreases to 45 rpm during a time period of 5.1 seconds (still in the counter-clockwise direction). What is the average angular acceleration (α) of the record during this time period?

$$\theta_f = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2$$

$$B) \qquad \omega_f = \omega_i + \alpha t$$

$$\theta_f = \theta_i + \frac{1}{2}(\omega_f + \omega_i)t$$

$$D) \qquad \omega_f^2 = \omega_i^2 + 2\alpha\Delta\theta$$

Which kinematics equation should you use?

What is the angular velocity of the earth as it goes around the sun?

$$\theta_f = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2$$

$$\omega_f = \omega_i + \alpha t$$

$$\theta_f = \theta_i + \frac{1}{2}(\omega_f + \omega_i)t$$

$$\omega_f^2 = \omega_i^2 + 2\alpha\Delta\theta$$

Moments of Inertia

- How mass is distributed
- In general:

$$I = \sum_{i} m_i r_i^2$$

Changes when you you consider different axes of rotation.

Pre-calculated for common 3D objects \rightarrow

TABLE 10.2

Moments of Inertia of Homogeneous Rigid Objects With Different Geometries

Hoop or thin cylindrical shell $I_{CM} = MR^2$

Solid cylinder or disk

$$I_{\rm CM} = \frac{1}{2} \, M R^2$$

Long thin rod with rotation axis through center

$$I_{\rm CM} = \frac{1}{12} ML^2$$

$$I = \frac{1}{3} ML^2$$

Solid sphere

$$I_{\rm CM} = \frac{2}{5} MR^2$$

shell
$$I_{\text{CM}} = \frac{2}{3} MR^2$$

Announcements

- Homework due tomorrow by 4pm
- Office hours today at 5pm
- Today is the deadline to drop with a W
- Fill out survey online
- No quiz this week! Just a Final on Friday.