SOLUTIONS

Worksheet 1: Math review and 1D motion

1 Sig Figs and Scientific Notation

How many significant figures does each of the following numbers have?

1.
$$62.1 \times 10^3$$
 _____3

1.2Compute the following numbers with the correct number of sig figs:

a.
$$33.3 \times 25.4 = 846$$

d.
$$2.345 \times 3.321 =$$
 7.788

b.
$$33.3 - 25.4 =$$
 7.9

e.
$$(4.32 \times 1.23) - 5.1 =$$
 O. 2

c.
$$33.3 \div 45.1 = 0.738$$

f.
$$33.3^2 = 110$$

1.3Express the following numbers and computed results in scientific notation

a. 9,827
$$\underline{9.827 \times 10^3}$$

e.
$$0.059 \div 2,304 = 2.4 \times 10^{-5}$$

f.
$$320. \times 0.050 = 1.6 \times 10^{1}$$

Algebra Review:

Simplify or solve each:

a.
$$\frac{10^2}{(10^3)^2}$$

$$10^{-4}$$

c.
$$\frac{(10^2)^{10}}{10^{20}}$$

d.
$$\frac{10^9}{(10^4)^2}$$
 (0

e. Solve for a:
$$y = v_0 t + \frac{1}{2}at^2$$
 f. Solve for g: $T = 2\pi\sqrt{\frac{L}{g}}$

olve for a:
$$y = v_0 t + \frac{1}{2}at^2$$
 f. Solve for g: $T = 2\pi\sqrt{\frac{L}{g}}$ g. Solve for $\mu : \underline{\mu} = \frac{2}{r + \mu}$ g. Solve for $\mu : \underline{\mu} = \frac{2}{r + \mu}$ g. $\mu = \frac{\sqrt{2}r}{r + \mu}$

g. Solve for
$$\mu : \frac{1}{r = \mu mg}$$

Solving systems of equations 2.2

A)
$$h = h_0 + v_0 t - \frac{1}{2}gt^2$$
, B) $v^2 = v_0^2 - 2gh$, C) $v = v_0 - gt$

1) You are given v_0 , h_0 , and g and the equations above. Do you have enough equations to solve for v? Can you do it with two equations? With one? Solve for v:

Yes you can solve for v. You have to use all three.
$$V^2 = V_0^2 - 2g \left[h_0 + V_0 \left(\frac{v_0 - v}{g} \right) - \frac{1}{2} g \left(\frac{v_0 - v}{g} \right)^2 \right]$$

2) You are given v, t, and g. Do you have enough equations to solve for h? Can you do it with two equations? With one? Solve for h:

equations? With one? Solve for h:

You can solve for h with Equations B and C:

$$v_0 = v - qt \rightarrow v^2 = (v^2 - qt)^2 - 2qh$$
 $v_0 = v - qt \rightarrow v^2 = (v^2 - qt)^2 - 2qh$

Arrange (c)

Plug into (B)

 $v_0 = (v - qt)^2 - v^2 - v^2$

2. SI Units and Dimensional analysis:

SI Units and Dimensional analysis: 3

Convert the following to SI units. Work across the line and show all steps in the 3.1conversion. Use scientific notation and apply the proper use of significant figures.

a.
$$9.12 \, \mu s \times \frac{1s}{10^6 \mu s} = 9.12 \times 10^{-6} s$$

b. $3.42 \, \text{km} \times \frac{10^3 \text{m}}{1 \, \text{km}} = \boxed{3.42 \times 10^3 \text{m}}$
c. $44 \, \text{cm/ms} \times \frac{10^3 \text{ms}}{1 \, \text{s}} \times \frac{1 \, \text{m}}{10^2 \, \text{cm}} = \boxed{440 \, \text{m/s}}$
d. $80 \, \text{km/hr} \times \frac{10^3 \text{m}}{1 \, \text{km}} \times \frac{1 \, \text{hr}}{3600 \, \text{s}} = \boxed{22 \, \text{m/s}}$
e. $8 \, \text{in} \times \frac{2.54 \, \text{cm}}{1 \, \text{in}} \times \frac{1 \, \text{m}}{10^2 \, \text{cm}} = \boxed{0.2 \, \text{m}}$
f. $13 \, \text{in}^2 \times \left(\frac{2.54 \, \text{cm}}{1 \, \text{in}}\right)^2 \times \left(\frac{1 \, \text{m}}{10^2 \, \text{cm}}\right)^2 = \boxed{9.3 \times 10^{-3} \, \text{m}^2}$
g. $250 \, \text{cm}^3 \times \left(\frac{1}{10^2 \, \text{cm}}\right)^3 = \boxed{2.5 \times 10^{-4} \, \text{m}}$

3.2 Determine which of the following statements are reasonable:

- a. Joe is 180 cm tall. 1.80 m \approx 6 ft tall, which is reasonable
- b. I rode my bike to campus at a speed of 50 m/s & 120 mph not reasons
- c. A skier reaches the bottom of the hill going 25 m/s & 60 mph
- d. I can throw a ball a distance of 2 km
- e. I can throw a ball at a speed of 50 km/hr & 30 mph resonable

3.3 Use the following dimensions for variables to determine which equations are valid:

$$[x] = [L], [m] = [M], [v] = [L]/[T], [t] = [T], [a] = [L]/[T]^2, [A] = [L]^2,$$

$$[E] = [M][L]^2/[T]^2, \qquad [F] = [M][L]/[T]^2, \qquad [p] = [M][L]/[T], \qquad [P] = [M][L]^3/[T]^2$$

$$x = vt \qquad [L] = \frac{L}{|T|} \cdot [T] = [L], \qquad \text{which is } valid$$

$$x = \frac{1}{2}at^2 \qquad [L] = \frac{1}{2} \cdot [T]^2 \qquad \text{Valid}$$

$$v^2 = x + ax \left(\frac{1}{|T|} \right)^2 \neq [L] + [T]^2 \cdot [L] \qquad \text{not } valid$$

$$v = at \qquad [L] = [L] \cdot [T] \qquad \text{Valid}$$

$$F = ma \qquad [L]^2 = [n] \cdot [T]^2 \qquad \text{Valid}$$

$$E = Fx \qquad [T]^2 = [n] \cdot [L] \qquad \text{Valid}$$

$$E = Fx \qquad [T]^2 = [n] \cdot [L] \qquad \text{Valid}$$

$$E = \frac{1}{2}p^2x \qquad [T]^2 \neq [T]^2 \qquad \text{Not } valid$$

4 Reading graphs

- 1. During what time interval is there acceleration? 0-5 min
- 2. During what time interval is there zero velocity? 5-6 min
- 3. At what instant is velocity zero but acceleration nonzero? $\pm = 2.25$ min
- 4. During what time interval is there the highest speed? 4-5 min
- 5. During what time interval is there slow down? <u>Omin</u> 2.25 min
- 6. During what time interval is there speeding up? 2.25min 5 min
- 7. Do your best to sketch graphs for velocity and acceleration

3. Vectors

- -Draw the vector on the axes provided.
- -Draw and label an angle $\boldsymbol{\theta}$ to describe the direction of the vector.
- -Find the magnitude and direction of the vector.

