Chapter 5 Even Problem Solutions

24. The parachute jumper is descending at a steady rate, which means he is not accelerating. The force of the air on the parachute must be perfectly canceling the force of gravity. Therefore:

$$
\begin{equation*}
F_{a i r}=m g=50 \mathrm{~kg} * 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=490 \mathrm{~N} \tag{1}
\end{equation*}
$$

36. A 12 N force will accelerate the total 6 kg set of blocks at $2 \frac{m}{s^{2}}$, for the 3 kg block to accelerate at $2 \frac{m}{s^{2}}$, it needs to have a force of 6 N applied to it. The only block that could be providing this force is the middle block, so we conclude that the middle block is exerting $6 N$ of force on the rightmost block.
37. We first assume that the astronaut and the satellite started at rest in our system.
a. The acceleration of the astronaut is:

$$
\begin{equation*}
a_{a}=\frac{120 \mathrm{~N}}{68 \mathrm{~kg}}=1.76 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \tag{2}
\end{equation*}
$$

Similarly, the acceleration of the satellite is:

$$
\begin{equation*}
a_{s}=\frac{120 \mathrm{~N}}{420 \mathrm{~kg}}=.29 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \tag{3}
\end{equation*}
$$

The respective speeds are thus:

$$
\begin{gather*}
v_{a}=a_{a} t=1.76 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} * .89 \mathrm{~s}=1.57 \frac{\mathrm{~m}}{\mathrm{~s}} \tag{4}\\
v_{s}=a_{s} t=.29 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} * .89 \mathrm{~s}=.26 \frac{\mathrm{~m}}{\mathrm{~s}} \tag{5}
\end{gather*}
$$

b. The total speed with which the astronaut and the satellite are moving away from each other after the push is:

$$
\begin{equation*}
v_{t o t}=v_{a}+v_{s}=1.83 \frac{\mathrm{~m}}{\mathrm{~s}} \tag{6}
\end{equation*}
$$

Therefore, their separation after 1 minute is:

$$
\begin{equation*}
d=v_{t o t} t=1.83 \frac{\mathrm{~m}}{\mathrm{~s}} * 60 \mathrm{~s}=110 \mathrm{~m} \tag{7}
\end{equation*}
$$

44. By Hooke's law (we don't care about the negative sign):

$$
\begin{equation*}
x=\frac{F}{k}=\frac{35 N}{220 \frac{N}{m}}=.16 m \tag{8}
\end{equation*}
$$

