Chapter 3 Even Problem Solutions

\#12. The magnitude of the vector is:

$$
\|34 \hat{i}+13 \hat{j}\|=\sqrt{34^{2}+13^{2}}=36.4 m
$$

The angle it makes with the x -axis is:

$$
\theta=\tan ^{-1}\left(\frac{13}{34}\right)=21^{\circ}
$$

\#28. The x component is:

$$
V_{x}=18 \frac{\mathrm{~m}}{\mathrm{~s}} * \cos \left(220^{\circ}\right)=-13.8 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

The y component is:

$$
V_{y}=18 \frac{\mathrm{~m}}{\mathrm{~s}} * \sin \left(220^{\circ}\right)=-11.6 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

\#48. Let us make a few definitions. Let us define y to be the direction in which the river flows, and x to be the "directly across" direction. Therefore, the river flows with velocity $\vec{v}_{r}=.57 \frac{\mathrm{~m}}{\mathrm{~s}} \hat{j}$. We will row, with respect to the shores, with a velocity $\vec{v}=v_{x} \hat{i}+v_{y} \hat{j}$. Therefore, our total velocity is: $\vec{v}_{T}=\vec{v}+\overrightarrow{v_{r}}=v_{x} \hat{i}+\left(v_{y}+.57 \frac{m}{s}\right) \hat{j}$.
a. We want our total velocity to be 0 in the y direction. This is the definition of rowing "straight across". Therefore, we find immediately that:

$$
v_{y}=-.57 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

We also know that we can row with total speed of $1.3 \frac{\mathrm{~m}}{\mathrm{~s}}$, therefore:

$$
1.3 \frac{m}{s}=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{v_{x}^{2}+(.57)^{2}}
$$

Solving this we get that:

$$
v_{x}=1.17 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Because our y direction velocity is negative, we know we want to go against the flow of the river, or in the $-y$ direction. We can define the direction we want to go as the angle below the x axis:

$$
\theta=\tan ^{-1}\left(\frac{.57}{1.17}\right)=26^{\circ}
$$

b. We just noted that our (total) velocity in the x direction is $v_{x}=1.17 \frac{\mathrm{~m}}{\mathrm{~s}}$, therefore:

$$
t=\frac{63 \mathrm{~m}}{1.17 \frac{\mathrm{~m}}{\mathrm{~s}}}=54 \mathrm{~s}
$$

