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Lecture 9 

Weak Neutral Currents 
Chapter 13 in H&M. 



Weak Neutral Currents 
•  “Observation of neutrino-like interactions 

without muon or electron in the gargamelle 
neutrino experiment” Phys.Lett.B46:138-140,1973. 

•  This established weak neutral currents. 
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ρ allows for different coupling  
from charged current. 
cv = cA = 1 for neutrinos, but  
not for quarks. 

Experimentally: NC has small right handed component. 



EWK Currents thus far 
•  Charged current is strictly left handed. 

•  EM current has left and right handed component. 

•  NC has left and right handed component. 

=> Try to symmetrize the currents such that we get one 
SU(2)L triplet that is strictly left-handed, and a singlet.  



Reminder on Pauli Matrices 
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We will do the same constructions we did last quarter 
for isospin, using the same formalism. Though, this time,  
the symmetry operations are identified with a  “multiplet of  
weak currents” . The states are leptons and quarks. 



Starting with Charged Current 
•  Follow what we know from isospin, to form 

doublets: 
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We thus have a triplet of left handed currents W+,W-,W3 .  



Hypercharge, T3, and Q 
•  We next take the EM current, and decompose it such 

as to satisfy: 
                                           Q = T3 + Y/2 

•  The symmetry group is thus: SU(2)L x U(1)Y 
•  And the generator of Y must commute with the 

generators Ti, i=1,2,3 of SU(2)L . 
•  All members of a weak isospin multiplet thus have 

the same eigenvalues for Y. 
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Resulting Quantum Numbers 
Lepton T T3 Q Y 
ν 1/2 1/2 0 -1 
e-

L 1/2 -1/2 -1 -1 

e-
R 0 0 -1 -2 

Quark T T3 Q Y 
uL 1/2 1/2 2/3 1/3 
dL 1/2 -1/2 -1/3 1/3 
uR 0 0 2/3 4/3 
dR 0 0 -1/3 -2/3 

You get to verify the quark quantum numbers in HW3. 

Note the difference in Y quantum numbers for  
left and right handed fermions of the same flavor. 



Now back to the currents 
•  Based on the group theory generators, we 

have a triplet of W currents for SU(2)L and a 
singlet “B” neutral current for U(1)Y . 

•  The two neutral currents B and W3 can, and 
do mix to give us the mass eigenstates of 
photon and Z boson. 
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W3 and B mixing 
•  The physical photon and Z are obtained as: 

•  And the neutral interaction as a whole 
becomes: 
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Constraints from EM 
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⇒ gsinθW = ′ g cosθW = e

⇒ ′ g =
sinθW

cosθW

g

We now eliminate g’ and write the weak NC interaction as: 
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Summary on Neutral Currents 
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Vertex Factors: 

Charge of fermion 

€ 

−i g
cosθW

γ µ 1
2
(cV

f − cA
f γ 5)

cV and cA differ according to  
Quantum numbers of fermions. 

This thus re-expresses the “physical” currents for  
photon and Z in form of the “fundamental” symmetries. 



Q, cV,cA 
fermion Q cA cV 

neutrino 0 1/2 1/2 

e,mu -1 -1/2 -1/2 + 2 sin2θW ~ -0.03 

u,c,t +2/3 1/2 1/2 - 4/3 sin2θW ~ 0.19 

d,s,b -1/3 -1/2 -1/2 + 2/3 sin2θW ~ -0.34 

Accordingly, the coupling of the Z is sensitive to sin2θW . 
You will verify this as part of HW3. 



Origin of these values 

The neutral current weak interaction is given by: 
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Comparing this with: 
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Effective Currents 
•  In Chapter 12 of H&M, we discussed effective 

currents leading to matrix elements of the 
form: 
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From this we get the relative strength of NC vs CC: 
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EWK Feynman Rules 
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Photon vertex: Z vertex: 

W vertex: 
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Chapter 14 Outline 
•  Reminder of Lagrangian formalism 

–  Lagrange density in field theory 
•  Aside on how Feynman rules are derived from 

Lagrange density. 
•  Reminder of Noether’s theorem 
•  Local Phase Symmetry of Lagrange Density leads to 

the interaction terms, and thus a massless boson 
propagator. 
–  Philosophically pleasing … 
– … and require to keep theory renormalizable. 

•  Higgs mechanism to give mass to boson propagator. 



Reminder of Lagrange Formalism 
•  In classical mechanics the particle equations 

of motion can be obtained from the Lagrange 
equation: 

•  The Lagrangian in classical mechanics is 
given by: 

    L = T - V = Ekinetic - Epotential € 
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Lagrangian in Field Theory 
•  We go from the generalized discrete 

coordinates qi(t) to continuous fields φ(x,t), 
and thus a Lagrange density, and covariant 
derivatives: 
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Let’s look at examples (1) 
•  Klein-Gordon Equation: 
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Note: This works just as well for the Dirac equation. See H&M. 



Let’s look at examples (2) 
Maxwell Equation: 
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Aside on current conservation 
•  From this result we can conclude that the EM 

current is conserved:  

•  Where I used: 
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Aside on mass term 
•  If we added a mass term to allow for a 

massive photon field, we’d get: 
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This is easily shown from what we have done. 
Leave it to you as an exercise. 








