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Lecture 8 

A brief aside on statistics and data analysis. 
Beginning of Chapter 13 in H&M. 



Aside on Statistics 
•  Disclaimer: 

–  I am by no means an expert on statistics. To me 
it’s just a tool. 

– As all tools, the simpler the better !!! 
⇒  The statistical interpretation of what I see in my 

ONE experiment is guided by what I expect to see 
if I repeated the experiment N times. 



Aside on Philosophy 

I guess I’m a frequentist, 
because it’s simple,  
and I like my tools simple. 

Ref. from PDG 



Simple Classification of “Use 
Cases” for Statistics in HEP 

•  Parameter Estimation 
–  I do an experiment to estimate a parameter and its error. 

•  E.g. measuring a cross section, or a branching fraction, or deriving 
a theoretical parameter from a complex set of experimental 
measurements. 

•  Hypothesis Testing 
–  I measure a distribution, and want to compare data against 

multiple hypotheses to determine which of them is the 
most likely. 

•  Statistical significance in a new particle search. 
–  Distinguish bkg only hypothesis from hypothesis that allows for signal. 

•  Having observed a new particle, we then want to distinguish among 
a few possibilities for its spin, based on measurements of some 
angular distributions in its production and/or decay. 



Parameter vs Hypothesis 
•  Let’s say we search for ZZ production at the 

Tevatron in the decay ZZ->4 leptons.  

The error on the cross section is ~1/sqrt(3) ~60% . 
However, the probability for the background to fluctuate to  
the observed yield is ~ 10-5 . 
We thus consider this an observation of ZZ production with 
a statistical significance of 4.2”σ”. 



Meaning of 4.2”σ” ~ 10-5  

If we draw a random number from a Gaussian distribution 
 with mean=0 and unit width. The probability for picking a  
number larger than 4.2 is given as ~ 10-5. 

Having established the use of statistics in an example,  
let’s now start over and define some of our terms. 

I will follow a mix of PDG and Frodesen, Skjeggestad, and  
Tofte “Probability and Statistics in Particle Physics”. 



Measurement, Random variable, 
and Probability Density Function 

•  A measurement x is generally viewed as randomly 
distributed according to some probability density 
function f(x). 

•  To be a PDF the following must be true: 
–  If the measurement of x is repeated many times, then the 

probability to find a value in the range of [x, x+dx] is given 
by f(x)dx 

–  The integral f(x)dx over all possible measurement 
outcomes, x, is 1. I.e. f(x) is normalized to 1 when 
integrated across the space of all possible values of x. 



Expectation Value 
•  Any function of u(x) is again a random 

variable, generally with a different pdf g(u) 
than f(x). 

•  We refer to the “expectation value” of E(u) as: 

€ 

E(u) = u(x) f (x)dx
−∞

+∞

∫



Marginal Distributions 
•  Let’s assume we have two random variables 

x,y that have a joint PDF f(x,y) then we define 
the marginal distributions f1(x) and f2(y) as: 

•  The probability for x to be within [x,x+dx] if I 
couldn’t care less about the value of y is given 
by f1(x)dx.  € 

f1(x) = f (x,y)dy
−∞

+∞

∫



Conditional Distributions 
•  So what if I do care about y? 

•  The probability for x to be within [x,x+dx] 
under the condition of a fixed y is given by f4(x|
y) dx . 

•  And playing the same game the other way 
around: 



Bayes Theorem: 

•  Let’s look at a trivial example, uncorrelated 
variables:     f(x,y) = g(x) h(y) 

€ 

f1(x) = f (x,y)dy
−∞

+∞

∫ = g(x) h(y)dy
−∞

+∞

∫ = g(x)

f2(y) = f (x,y)dx
−∞

+∞

∫ = h(y) g(x)dx
−∞

+∞

∫ = h(y)

f3(y x) =
f (x,y)
f1(x)

= h(y)

f4 (x y) =
f (x,y)
f2(y)

= g(x)

Bayes Theorem for  
uncorrelated variables: 
g(x) = h(y)g(x)/h(y) 



Parameter Estimation 

There is no “a priori” right way of constructing the estimator. 
Instead, we define a set of “desirable” features we want from  
the estimation procedure.  

a)  Consistency 
b)  Lack of Bias 
c)  Efficiency 
d)  Robustness 



Consistency 
•  The estimator should converge to the true 

value as the amount of data used in the 
estimate increases to infinity. 

Lack of a bias 
•  For finite amounts of data, the expectation 

value of the estimator is equal to the true 
value. 



More on Bias 
•  In most cases, we are interested in estimating 

mean value and standard deviation 
simultaneously. 

•  In those cases we want both to be unbiased, 
i.e. we want the “pull distribution” to be normal 
(Gaussian with mean =0 and σ=1). 
– Pull distribution is the pdf:   f((x-mean)/σ) 



Efficiency 
•  It can be shown under very general conditions 

that the minimum variance of an estimator is 
given by the Cramer-Rao bound. 

•  An estimator is called efficient if its variance is 
minimal in the above sense, i.e. Cramer-Rao 
inequality becomes an equality. 

•  E.g.: You could use either the median or the 
mean as estimator of the peak of a Gaussian 
distribution. Both are consistent and unbiased. 
However, only the mean is efficient. 



In Practice 
•  We pick a procedure to estimate the physics quantity 

of interest. 
•  We use Monte Carlo methods to repeat our 

experiment many times, and thus study the 
properties of our estimator. 
– We plot the pull distribution for realistic sample sizes -> 

study bias. 
– We plot the pull distribution for “large” sample sizes -> 

study consistency. 
–  Efficiency is studied less often. Some people, myself 

included, prefer Maximum Likelihood Method for parameter 
estimation because it leads to efficient estimators if they 
exist at all. 



Maximum Likelihood Method 
•  If the pdf is known a priori, and the different 

data points measured are mutually 
independent, then a likelihood function can be 
constructed by forming the joint probability of 
all measured data points: 

€ 

L(θ) =
i
∏ f (xi θ)

The ML method simply says that you obtain θ by  
maximizing L(θ) given a set of measurements xi. 



In Practice 
•  ML fits are by far the most desirable “multi-variate” 

technique for deriving estimates of parameters of a 
physical theory. 

•  They require/allow you to develop a physical model 
of your experiment, parts of which you can often test 
via auxiliary measurements. 

•  It’s generally straightforward to build into your code 
that implements the ML fit the Monte Carlo methods 
to draw toy experiments from the distributions, and 
thus evaluate pull distributions. 



Cases when ML fit is impossible 
•  If the variables you measure have non-linear 

correlations that you do not understand a priori, then 
it is generally impossible to write down a sufficiently 
accurate pdf. 

•  In such cases you may have to either look for a 
different set of input variables, or resort to 
multivariate techniques with less well understood 
characteristics: 
–  Neural Networks 
–  Boosted decision trees 
– … 



Hypothesis Testing 
•  Distinguish between competing physics 

hypotheses. 
•  Test consistency of different datasets taken at 

different times. 
•  Test consistency of data and Monte Carlo 

expectations. 
•  Establish the probability for a given signal to 

be consistent with a background fluctuation. 

Let’s focus on the last, and discuss two simple examples. 



Example: Yield in signal region 
•  Assume you chose a set of cuts to define a signal 

region. 
•  Assume you have a background expectation in the 

signal region bkg +- σ.  
•  Draw toy experiments as follows: 

•  Draw an expected bkg from a Gaussian with mean=bkg and 
variance= σ2 . 

•  Draw an actual number of bkg events from a poison distribution 
with mean = expected background. 

•  Record the actual bkg from a billion of such experiments. 
•  Define the p-value as:  
   (# of toy experiments with actual bkg >= yield in data) / 1 billion. 



Example: Likelihood ratio 
•  Assume you have a signal likelihood Ls and a 

background likelihood Lbkg defined for your 
data. Define LR = Ls / Lbkg  or LLR= log LR. 

•  Draw 1 billion experiments from background 
only Monte Carlo, and record LR for each. 

•  Your p-value is defined as: 

(# of toy experiments with LR >= LR in data)/ 1 billion 



Interpretation of p-value 
•  It is an arbitrary, but common, criteria to require > 5σ 

significant excess before you call it an “observation”. 
•  This means that the p-value has to be < 2.85 10-7 , 

i.e. less than the area in the one-sided tail, 5σ away 
from the mean of a Gaussian distribution. 

•  In some cases, where the interpretation of “success” 
may include fluctuations in both directions, a p-value 
< 5.7 10-7 may be considered sufficient for an 
observation.   



An example pathology 
•  Let’s assume your model for both signal and 

bkg are gaussian pdfs with unit variance, but 
means: 

•  Signal = 0 
•  Bkg = +1.3 

•  Let’s assume you have 11 events in your 
sample, 7 of which are below -1, and 4 
between 0.5 and 1.5. 

•  What do you do? 



Lesson learned from pathology 
•  You are allowed to be “a little lucky”, and still 

claim an observation. 
•  However, if your distribution in data is 

inconsistent with both signal and bkg 
hypothesis, then you’ve got to pause. 

•  Chances are the data you have is just plain 
junk that is not modeled by either your signal 
or your background hypothesis. 



Back to Physics 
•  Weak Neutral Currents 
•  Start of Chapter 13 



Weak Neutral Currents 
•  “Observation of neutrino-like interactions 

without muon or electron in the gargamelle 
neutrino experiment” Phys.Lett.B46:138-140,1973. 

•  This established weak neutral currents. 

€ 

M =
4G
2
2ρJµ

NC JNCµ

Jµ
NC (q) = u γµ

1
2

cV − cAγ
5( )u

ρ allows for different coupling  
from charged current. 
cv = cA = 1 for neutrinos, but  
not for quarks. 

Experimentally: NC has small right handed component. 



EWK Currents thus far 
•  Charged current is strictly left handed. 

•  EM current has left and right handed component. 

•  NC has left and right handed component. 

=> Try to symmetrize the currents such that one SU(2)L 
triplet that is strictly left-handed, and an SU(2)L 
singlet.  



Starting with Charged Current 
•  Follow what we know from isospin, to form 

doublets: 

€ 

χL =
ν

e−
 

 
 

 

 
 

L

;τ + =
0 1
0 0
 

 
 

 

 
 ;τ− =

0 0
1 0
 

 
 

 

 
 

Jµ
±(x) = χ Lγµτ ±χL

Jµ
3 (x) = χ Lγµ

1
2
τ 3χL =

1
2
ν Lγµν L −

1
2

e LγµeL

We thus have a triplet of left handed currents W+,W-,W3 .  



Hypercharge, T3, and Q 
•  We next take the EM current, and decompose it such 

as to satisfy: 
                                           Q = T3 + Y/2 

•  The symmetry group is thus: SU(2)L x U(1)Y 
•  And the generator of Y must commute with the 

generators Ti, i=1,2,3 of SU(2)L . 
•  All members of a weak isospin multiplet thus have 

the same eigenvalues for Y. 

€ 

jµ
em = Jµ

3 +
1
2
jµ
Y



Resulting Quantum Numbers 
Lepton T T3 Q Y 
ν 1/2 1/2 0 -1 
e-

L 1/2 -1/2 -1 -1 

e-
R 0 0 -1 -2 

Quark T T3 Q Y 
uL 1/2 1/2 2/3 1/3 
dL 1/2 -1/2 -1/3 1/3 
uR 0 0 2/3 4/3 
dR 0 0 -1/3 -2/3 

You get to verify the quark quantum numbers in HW3. 



Now back to the currents 
•  Based on the group theory generators, we 

have a triplet of W currents for SU(2)L and a 
singlet “B” neutral current for U(1)Y . 

•  The two neutral currents B and W3 can, and 
do mix to give us the mass eigenstates of 
photon and Z boson. 

€ 

−ig J i( )
µ
Wµ

i − i ′ g 
2

JY( )
µ
BµBasic EWK interaction: 



W3 and B mixing 
•  The physical photon and Z are obtained as: 

•  And the neutral interaction as a whole 
becomes: 

€ 

−ig J 3( )
µ
Wµ

3 − i ′ g 
2

JY( )
µ
Bµ =

= −i gsinθW Jµ
3 + ′ g cosθW

Jµ
Y

2

 

 
 

 

 
 Aµ

−i gcosθW Jµ
3 − ′ g sinθW

Jµ
Y

2

 

 
 

 

 
 Z µ

€ 

Aµ =Wµ
3 sinθW + Bµ cosθW

Zµ =Wµ
3 cosθW − Bµ sinθW



Constraints from EM 

€ 

ejem = e Jµ
3 +

Jµ
Y

2

 

 
 

 

 
 = −i gsinθW Jµ

3 + ′ g cosθW

Jµ
Y

2

 

 
 

 

 
 

⇒ gsinθW = ′ g cosθW = e

⇒ ′ g =
sinθW

cosθW

g

We now eliminate g’ and write the weak NC interaction as: 

€ 

−i g
cosθW

Jµ
3 − sin2θW jµ

em( )Z µ ≡ −i g
cosθW

Jµ
NCZ µ



Summary on Neutral Currents 

€ 

jµ
em = Jµ

3 +
1
2
jµ
Y

Jµ
NC = Jµ

3 − sin2θW jµ
em

This thus re-expresses the “physical” currents for  
photon and Z in form of the “fundamental” symmetries. 








