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Lecture 3
• Weak Interactions (continued)

• muon decay
• Pion decay



Muon Decay Overview (1)
• Feynman diagram:

• Matrix Element:
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G = effective coupling of a 4-fermion interaction
Structure of 4-fermion interaction is (V-A)x(V-A)

We clearly want to test this experimentally, 
e.g. compare against (V-A)x(V+A), S, P, T, etc.



Muon Decay Overview (2)

• Differential width:

• Phase space
differential:
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Calculational Challenges
• There’s a spin averaged matrix element

involved, requiring the use of some trace
theorems.

• The phase space integral is not trivial.

I’ll provide you with an outline of how these are done, 
and leave it up to you to go through the details in H&M.



Phase Space Integration (1)
• We have:

• We can get rid of one of the three d3p/E by
using:

• And eliminating the d4k integral against the 4d
delta-function. This leads to:
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This means E - E’- ω’ > 0



Phase Space Integration (2)
• As was done for beta-decay, we replace:

• And evaluate delta-fct argument in muon
restframe:
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Recall: primed variables are from second W vertex.



Spin Average Matrix Element
• We neglect the mass of the electron and

neutrinos.
• And use the trace theorem H&M (12.29) to

arrive at:
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Muon Restframe
• To actually do the phase space integral, we

go into the muon restframe where we find:
• 2 kp’ =(k+p’)2 = (p-k’)2 = m2 - 2pk’ = m2 - 2m ω’

• k’p = ω’m

• And as a result we get:

Mass of e and nu
are ignored

4-mom. cons.

Mass nu is ignored
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Mu restframe



Putting the pieces together and doing the
integration over cosθ, the opening angle of e and

its anti-neutrino, we arrive at:
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The inequality come from 
the requirement that cosθ 
is physical. And are easily 
understood from the allowed 
3-body phasespace where one 
of the 3 is at rest.



Electron Energy Spectrum
• Integrate over electron antineutrino energy:
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The spectrum can be 
used to test V-A.
This is discussed as 
“measurement of Michel 
Parameters” in the literature.



Michel Parameters
• It can be shown that any 4-fermion coupling

will lead to an electron spectrum like the one
we derived here, once we allow a “Michel
Parameter” ρ, as follows:

• ρ=0 for (V-A)x(V+A),S,P; ρ=1 for T
• ρ=0.75 for (V-A)x(V-A)
• With polarized muon beams and measurement of electron

polarization, other “Michel Parameters” come into play.

 

x =
2E

e

mµ

 

1

!
d!
dx

=12x
2
1" x +

2

3
#
4

3
x "1

$ 

% 
& 

' 

( 
) 

* 

+ 
, 

- 

. 
/ 

 

!µ = 0.7509 ± 0.0010

!" = 0.745 ± 0.008

Measured Value:



Total Decay Width of Muon
• Integrate over electron energy:
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Note: Comparing muon and tau decays, as well as 
tau decays to electron and muon, allows for stringent 
tests of lepton universality to better than 1%.  
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Pion Decay
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• Leptonic vertex is identical to the leptonic
current vertex in muon decay.

• Hadronic vertex needs to be parametrized as
it can NOT be treated as a current composed
of free quarks.



Parametrization of Hadronic Current
• Matrix element is Lorentz invariant scalar.

– Hadronic current must be vector or axial vector
• Pion is spinless

– Q is the only vector to construct a current from.
• The current at the hadronic vertex thus must be of

the form:

• However, as q2 = mπ
2 = constant, we refer to fπ

simply as the “pion decay constant”.
• All other purely leptonic decays of weakly decaying

mesons can be calculated in the same way. There
are thus “decay constants” for B0, Bs

0, D+, Ds
+,

K+,etc.

 

q
µ
f
!
(q

2
) = q

µ
f
!
(m

!

2
) = q

µ
f
!



Aside:
• This sort of parametrization is “reused” also

when extrapolating from semileptonic to
hadronic decays at fixed q2

– E.g. Using B -> D lnu to predict B -> D X where X
is some hadron.

– This is crude, but works reasonably well in some
cases.



Matrix Element for Pion Decay
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Now use the Dirac Equation for muon and neutrino:
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Note: this works same 
way for any aV+bA .



Trace and Spin averaging
• The spin average matrix element squared is

then given by:

• You can convince yourself that this trace is
correct by going back to H&M (6.19), (6.20).
The only difference is the “+” sign. This comes
from “pulling” a gamma matrix past gamma5. 
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Going into the pion restframe
• We get:

• Where we used that muon and neutrino are
back to back in the pion restframe.
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Pion leptonic decay width
• Putting it all together, we then get:
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Energy conservation

3-momentum conservation
Use this to kill int over d3p



Pion leptonic width
• I’ll spare you the details of the integrations.

They are discussed in H&M p.265f
• The final result is:
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Helicity Suppression
• The pion has spin=0 .
• Angular momentum is conserved.

⇒ Electron and anti-neutrino have same helicity.
⇒ However, weak current does not couple to J=0

electron & antineutrino pair.
⇒ Rate is suppressed by a factor:
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Experimentally
• As the pion decay constant is not known, it is

much more powerful to form the ratio of partial
widths:
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Experimentally, we find:  (1.230 +- 0.004) x 10-4 

Aside: Theory number here includes radiative corrections !!!
I.e., this is not just the mass ratio as indicated !!!



Experimental Relevance
• We’ve encountered this a few times already,

and now we have actually shown the size of
the helicity suppression, and where it comes
from.

Accordingly, pion decay produces a rather pure 
muon neutrino beam, with the charge of the pion 
determining neutrino or anti-neutrino in the beam.
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Origin of Helicity Suppression
Recap

• The muon mass entered because of the
vector nature of the leptonic current.
⇒Either V or A or some combination of aV+bA will

all lead to helicity suppression.
⇒In particular, a charged weak current with S,P, or

T instead of V,A is NOT consistent with
experiment.

• In addition, we used:
– Neutrinos are massless
– Electron-muon universality



Window for New Physics via
leptonic decays
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Example
B+ decay

The smallness of Vub
and muon mass allows for 
propagators other than W 
to compete, especially if they
do not suffer from helicity 
suppression => e.g. charged Higgs   




