
Chapter 2

Mesoscopia

2.1 References

• Y. Imry, Introduction to Mesoscopic Physics

• M. Janssen, Fluctuations and Localization

• D. Ferry and S. M. Goodnick, Transport in Nanostructures

2.2 Introduction

Current nanofabrication technology affords us the remarkable opportunity to study con-
densed matter systems on an unprecedented small scale. For example, small electron boxes
known as quantum dots have been fabricated, with characteristic size ranging from 10 nm
to 1 µm; the smallest quantum dots can hold as few as one single electron, while larger
dots can hold thousands. In systems such as these, one can probe discrete energy level
spectra associated with quantization in a finite volume. Oftentimes systems are so small
that Bloch’s theorem and the theoretical apparatus of Boltzmann transport are of dubious
utility.

2.3 The Landauer Formula

Consider a disordered one-dimensional wire connected on each end to reservoirs at fixed
chemical potential µL and µR. For the moment, let us consider only a single spin species,
or imagine that the spins are completely polarized. Suppose further that µL > µR, so that
a current I flows from the left reservoir (L) to the right reservoir (R). Next, consider a
cross-sectional surface Σ just to the right of the disordered region. We calculate the current
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flowing past this surface as a sum over three terms:

IΣ = −e
∫
dεN (ε) v(ε)

{
T (ε) f(ε− µL) +R′(ε) f(ε− µR)− f(ε− µR)

}
. (2.1)

Here, N (ε) is the density of states in the leads per spin degree of freedom, and corresponding
to motion in a given direction (right or left but not both); v(ε) is the velocity, and f (ε−µL,R)
are the respective Fermi distributions. T (ε) is the transmission probability that electrons of
energy ε emerging from the left reservoir will end up in right reservoir; R′(ε) is the reflection
probability that electrons emerging from right reservoir will return to the right reservoir.
The three terms on the right hand side of (2.1) correspond, respectively, to: (i) electrons
emerging from L which make it through the wire and are deposited in R, (ii) electrons
emerging from R which fail to ‘swim upstream’ to L and are instead reflected back into
R, and (iii) all electrons emerging from reservoir R (note this contribution is of opposite
sign). The transmission and reflection probabilities are obtained by solving for the quantum
mechanical scattering due to the disordered region. If the incoming flux amplitudes from
the left and right sides are i and i′, respectively, and the outgoing flux amplitudes on those
sides o′ and o, linearity of the Schrödinger equation requires that(

o′

o

)
= S

(
i
i′

)
; S =

(
r t′

t r′

)
. (2.2)

The matrix S is known as the scattering matrix (or S-matrix, for short). The S-matrix ele-
ments r, t, etc. are reflection and transmission amplitudes. The reflection and transmission
probabilities are given by

R = |r|2 T ′ = |t′|2 (2.3)

T = |t|2 R′ = |r′|2 . (2.4)

Going back to (2.1), let us assume that we are close to equilibrium, so the difference µR−µL

in chemical potentials is slight. We may then expand

f(ε− µR) = f(ε− µL) + f ′(ε− µL) (µL − µR) + . . . (2.5)

and obtain the result

I = e(µR − µL)
∫
dεN (ε) v(ε)

(
−∂f

0

∂ε

)
T (ε)

=
e

h
(µR − µL)

∫
dε

(
−∂f

0

∂ε

)
T (ε) , (2.6)

valid to lowest order in (µR − µL). We have invoked here a very simple, very important
result for the one-dimensional density of states. Considering only states moving in a definite
direction (left or right) and with a definite spin polarization (up or down), we have

N (ε) dε =
dk

2π
=⇒ N (ε) =

1
2π

dk

dε
=

1
hv(ε)

(2.7)
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where h = 2π~ is Planck’s constant. Thus, there is a remarkable cancellation in the product
N (ε) v(ε) = h−1. Working at T = 0, we therefore obtain

I =
e

h
(µR − µL)T (εF) , (2.8)

where T (εF) is the transmission probability at the Fermi energy. The chemical potential
varies with voltage according to µ(V ) = µ(0) − eV , hence the conductance G = I/V is
found to be

G =
e2

h
T (εF) (per spin channel) (2.9)

=
2e2

h
T (εF) (spin degeneracy included) (2.10)

The quantity h/e2 is a conveniently measurable 25, 813 Ω.

We conclude that conductance is transmission - G is e2/h times the transmission probability
T (εF) with which an electron at the Fermi level passes through the wire. This has a certain
intuitive appeal, since clearly if T (εF) = 0 we should expect G = 0. However, two obvious
concerns should be addressed:

• The power dissipated should be P = I2R = V 2G. Yet the scattering in the wire is
assumed to be purely elastic. Hence no dissipation occurs within the wire at all, and
the Poynting vector immediately outside the wire must vanish. What, then, is the
source of the dissipation?

• For a perfect wire, T (εF) = 1, and G = e2/h (per spin) is finite. Shouldn’t a perfect
(i.e. not disordered) wire have zero resistance, and hence infinite conductance?

The answer to the first of these riddles is simple – all the dissipation takes place in the R
reservoir. When an electron makes it through the wire from L to R, it deposits its excess
energy µL−µR in the R reservoir. The mechanism by which this is done is not our concern
– we only need assume that there is some inelastic process (e.g. electron-phonon scattering,
electron-electron scattering, etc.) which acts to equilibrate the R reservoir.

The second riddle is a bit more subtle. One solution is to associate the resistance h/e2 of a
perfect wire with the contact resistance due to the leads. The intrinsic conductance of the
wire Gi is determined by assuming the wire resistance and contact resistances are in series:

G−1 = G−1
i +

h

e2
=⇒ Gi =

e2

h

T (εF)

1− T (εF)
=
e2

h

T (εF)

R(εF)
, (2.11)

where Gi is the intrinsic conductance of the wire, per spin channel. Now we see that when
T (εF)→ 1 the intrinsic conductance diverges: Gi →∞. When T � 1, Gi ≈ G = (e2/h)T .
This result (2.11) is known as the Landauer Formula.

To derive this result in a more systematic way, let us assume that the disordered segment
is connected to the left and right reservoirs by perfect leads, and that the leads are not in



4 CHAPTER 2. MESOSCOPIA

equilibrium at chemical potentials µL and µR but instead at µ̃L and µ̃R. To determine µ̃L

and µ̃R, we compute the number density (per spin channel) in the leads,

nL =
∫
dεN (ε)

{[
1 +R(ε)

]
f(ε− µL) + T ′(ε) f(ε− µR)

}
(2.12)

nR =
∫
dεN (ε)

{
T (ε)f(ε− µL) +

[
1 +R′(ε)

]
f(ε− µR)

}
(2.13)

and associate these densities with chemical potentials µ̃L and µ̃R according to

nL = 2
∫
dεN (ε) f(ε− µ̃L) (2.14)

nR = 2
∫
dεN (ε) f(ε− µ̃R) , (2.15)

where the factor of two accounts for both directions of motion. To lowest order, then, we
obtain

2(µL − µ̃L) = (µL − µR)T ′ =⇒ µ̃L = µL + 1
2 T
′ (µR − µL) (2.16)

2(µR − µ̃R) = (µR − µL)T =⇒ µ̃R = µR + 1
2 T (µL − µR) (2.17)

and therefore

(µ̃L − µ̃R) =
(
1− 1

2T −
1
2T
′) (µL − µR)

= (1− T ) (µL − µR) , (2.18)

where the last equality follows from unitarity (S†S = SS† = 1). There are two experimental
configurations to consider:

• Two probe measurement – Here the current leads are also used as voltage leads. The
voltage difference is ∆V = (µR − µL)/e and the measured conductance is G2−probe =

(e2/h)T (εF).

• Four probe measurement – Separate leads are used for current and voltage probes.
The observed voltage difference is ∆V = (µ̃R − µ̃L)/e and the measured conductance
is G4−probe = (e2/h)T (εF)/R(εF).

2.3.1 Example: Potential Step

Perhaps the simplest scattering problem is one-dimensional scattering from a potential step,
V (x) = V0 Θ(x). The potential is piecewise constant, hence the wavefunction is piecewise a
plane wave:

x < 0 : ψ(x) = I eikx +O′ e−ikx (2.19)

x > 0 : ψ(x) = O eik
′x + I ′ e−ik

′x , (2.20)
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Figure 2.1: Scattering at a potential step.

with

E =
~2k2

2m
=

~2k′2

2m
+ V0 . (2.21)

The requirement that ψ(x) and its derivative ψ′(x) be continuous at x = 0 gives us two
equations which relate the four wavefunction amplitudes:

I +O′ = O + I ′ (2.22)
k(I −O′) = k′(O − I ′) . (2.23)

As emphasized earlier, the S-matrix acts on flux amplitudes. We have(
i
o′

)
=
√
v

(
I
O′

)
,

(
o
i′

)
=
√
v′
(
O
I ′

)
, (2.24)

with v = ~k/m and v′ = ~k′/m. One easily finds the S-matrix, defined in eqn. 2.2, is given
by

S =

t r′

r t′

 =

2
√
ε

1+ε
ε−1
1+ε

1−ε
1+ε

2
√
ε

1+ε

 , (2.25)

where ε ≡ v′/v = k′/k =
√

1− V0
E , where E = εF is the Fermi energy. The two- and

four-terminal conductances are then given by

G2−probe =
e2

h
|t|2 =

e2

h
· 4ε

(1 + ε)2
(2.26)

G4−probe =
e2

h

|t|2

|r|2
=
e2

h
· 4ε

(1− ε)2
. (2.27)

Both are maximized when the transmission probability T = |t|2 = 1 is largest, which occurs
for ε = 1, i.e. k′ = k.
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Figure 2.2: Dimensionless two-terminal conductance g versus k′/k for the potential step.
The conductance is maximized when k′ = k.

2.4 Multichannel Systems

The single channel scenario described above is obtained as a limit of a more general mul-
tichannel case, in which there are transverse degrees of freedom (due e.g. to finite cross-
sectional area of the wire) as well. We will identify the transverse states by labels i. Within
the perfect leads, the longitudinal and transverse energies are decoupled, and we may write

ε = ε⊥i + ε‖(k) , (2.28)

where ε‖(k) is the one-dimensional dispersion due to motion along the wire (e.g. ε‖(k) =

~2k2/2m∗, ε‖(k) = −2t cos ka, etc.). k is the component of the wavevector along the axis of

the wire. We assume that the transverse dimensions are finite, so fixing the Fermi energy εF

in turn fixes the total number of transverse channels, Nc, which contribute to the transport:

Nc(ε) =
∑
i

Θ(ε− ε⊥i) (continuum) (2.29)

=
∑
i

Θ
(
2t− |ε− ε⊥i|

)
(tight binding) . (2.30)

Equivalently, an electron with energy ε in transverse state i has wavevector ki which satisfies

ε‖(ki) = ε− ε⊥i . (2.31)
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Nc is the number of real positive roots of (2.31). Typically Nc ≈ kd−1
F A, where A is the

cross-sectional area and kF is the Fermi wavevector. The velocity vi is

vi(ε) =
1
~
∂ε

∂k

∣∣∣∣
ki

=
1
~
∂ε‖(k)

∂k

∣∣∣∣∣
k=ki

. (2.32)

The density of states Ni(ε) (per unit spin, per direction) for electrons in the ith transverse
channel is

Ni(ε) =
∫
Ω̂

dk

2π
Θ
(
v(k)

)
δ
(
ε− ε⊥i − ε‖(k)

)
=

1
2π

dk

dε‖

∣∣∣∣∣
k=ki

, (2.33)

so once again we have for the product h vi(ε)Ni(ε) = 1.

Consider now a section of disordered material connected to perfect leads on the left and
right. The solution to the Schrödinger equation on either side of the disordered region is

ψleft(x⊥, z) =
NL

c∑
j=1

{
Ij e

+ikjz +O′i e
−ikjz

}
ϕL
j (x⊥) (2.34)

ψright(x⊥, z) =
NR

c∑
a=1

{
Oa e

+ikaz + I ′a e
−ikaz

}
ϕR
a (x⊥) . (2.35)

Here, we have assumed a general situation in which the number of transverse channels NL,R
c

may differ between the left and right lead. The quantities {Ij , O′j , Oa, I ′a} are wave function
amplitudes. The S-matrix, on the other hand, acts on flux amplitudes {ij , o′j , oa, i′a}, which
are related to the wavefunction amplitudes as follows:

ii = v
1/2
i Ii oa = v1/2

a Oa (2.36)

o′i = v
1/2
i O′i i′a = v1/2

a I ′a . (2.37)

The S-matrix is a (NR
c +NL

c )× (NR
c +NL

c ) matrix,

S =

(
r
NL

c ×NL
c

t′
NL

c ×NR
c

t
NR

c ×NL
c

r′
NR

c ×NR
c

)
(2.38)

which relates outgoing and incoming flux amplitudes:

(
o′

o

)
=

S︷ ︸︸ ︷(
r t′

t r′

) (
i
i′

)
. (2.39)

Unitarity of S means that S†S = SS† = I, where

S =
(
r t′

t r′

)
=⇒ S† =

(
r† t†

t′† r′†

)
, (2.40)
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and hence unitarity says

rik r
∗
jk + t′ic t

′∗
jc = δij r∗ki rkj + t∗ci tcj = δij (2.41)

tak t
∗
bk + r′ac r

′∗
bc = δab t′∗ka t

′
kb + r′∗ca r

′
cb = δab (2.42)

rik t
∗
ak + t′ic r

′∗
ac = 0 r∗ki t

′
ka + t∗ci r

′
ca = 0 , (2.43)

or, in matrix notation,

r r† + t′ t′† = r† r + t†t = I
NL

c ×NL
c

(2.44)

t t† + r′ r′† = t′† t′ + r′† r′ = I
NR

c ×NR
c

(2.45)

r t† + t′ r′† = r† t′ + t† r′ = O
NL

c ×NR
c

(2.46)

t r† + r′ t′† = t′† r + r′† t = O
NR

c ×NL
c
. (2.47)

We define the probabilities

Ri =
NL

c∑
k=1

rik r
∗
ik Ta =

NL
c∑

k=1

tak t
∗
ak (2.48)

T ′i =
NR

c∑
c=1

t′ic t
′∗
ic R′a =

NR
c∑

c=1

r′∗ac r
′
ac , (2.49)

for which it follows that

Ri + T ′i = 1 , R′a + Ta = 1 (2.50)

for all i ∈ {1, . . . , NL
c } and a ∈ {1, . . . , NR

c }. Unitarity of the S-matrix preserves particle
flux:

|i|2 − |i′|2 = |o|2 − |o′|2 , (2.51)

which is shorthand for

NL
c∑

j=1

|ij |2 +
NR

c∑
a=1

|i′a|2 =
NR

c∑
a=1

|oa|2 +
NL

c∑
j=1

|o′j |2 . (2.52)

Onsager reciprocity demands that S(−H) = St(H).
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Let us now compute the current in the right lead flowing past the imaginary surface Σ

IΣ = −e
NR

c∑
a=1

∫
dεNa(ε) va(ε)

{ Ta(ε)︷ ︸︸ ︷
NL

c∑
i=1

∣∣tai(ε)∣∣2 f(ε− µL)

+

[ R′a(ε)︷ ︸︸ ︷
NR

c∑
b=1

∣∣r′ab(ε)∣∣2 −1

]
f(ε− µR)

}

=
e

h
(µR − µL)

∫
dε

(
−∂f

0

∂ε

) NR
c∑

a=1

Ta(ε) . (2.53)

Thus, the result of a two-probe measurement would be

G2−probe =
eI

µR − µL

=
e2

h

∫
dε

(
−∂f

0

∂ε

) NR
c∑

a=1

Ta(ε) . (2.54)

At zero temperature, then,

G2−probe =
e2

h
Tr tt† (2.55)

where

Tr tt† = Tr t†t =
NL

c∑
i=1

NR
c∑

a=1

∣∣tai∣∣2 . (2.56)

To determine G4−probe, we must compute the effective chemical potentials µ̃L and µ̃R in the
leads. We again do this by equating expressions for the electron number density. In the left
lead,

nL =
NL

c∑
i=1

∫
dεNi(ε)

{[
1 +Ri(ε)

]
f(ε− µL) + T ′i (ε) f(ε− µR)

}
(2.57)

= 2
∑
i

∫
dεNi(ε) f(ε− µ̃L) (2.58)

=⇒ µ̃L = µL − 1
2T
′ (µL − µR) (2.59)

where T ′ is a weighted average,

T
′ ≡

∑
i v
−1
i T ′i∑
i v
−1
i

. (2.60)
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Similarly, one obtains for the right lead,

nR =
NR

c∑
a=1

∫
dεNa(ε)

{
Ta(ε) f(ε− µL) +

[
1 +R′a(ε)

]
f(ε− µR)

}
(2.61)

= 2
∑
a

∫
dεNa(ε) f(ε− µ̃R) (2.62)

=⇒ µ̃R = µR + 1
2T (µL − µR) (2.63)

where

T ≡
∑

a v
−1
a Ta∑
a v
−1
a

. (2.64)

(We have assumed zero temperature throughout.) The difference in lead chemical potentials
is thus

(µ̃L − µ̃R) =
(

1− 1
2T −

1
2T
′
)
· (µL − µR) . (2.65)

Hence, we obtain the 4-probe conductance,

G4−probe =
e2

h

∑
a Ta

1− 1
2

(∑
i T
′
i v
−1
i

/∑
i v
−1
i

)
− 1

2

(∑
a Ta v

−1
a

/∑
a v
−1
a

) (2.66)

2.4.1 Transfer Matrices: The Pichard Formula

The transfer matrix S acts on incoming flux amplitudes to give outgoing flux amplitudes.
This linear relation may be recast as one which instead relates flux amplitudes in the right
lead to those in the left lead, i.e.

(
o′

o

)
=

S︷ ︸︸ ︷(
r t′

t r′

) (
i
i′

)
=⇒

(
o
i′

)
=

M︷ ︸︸ ︷(
M11 M12

M21 M22

) (
i
o′

)
. (2.67)

M is known as the transfer matrix. Note that each of the blocks of M is of dimension
NR

c × NL
c , and M itself is a rectangular 2NR

c × 2NL
c matrix. The individual blocks of M

are readily determined:

o′ = r i+ t′ i′ =⇒ i′ = −t′−1 r i+ t′−1 o′ (2.68)

o = t i+ r′ i′ =⇒ o = (t− r′ t′−1 r) i+ r′ t′−1 o′ , (2.69)

so we conclude

M11 = t†−1 M12 = r′ t′−1 (2.70)

M21 = −t′−1 r M22 = t′−1 . (2.71)

WARNING: None of this makes any sense if NL
c 6= NR

c ! The reason is that it is prob-
lematic to take the inverse of a rectangular matrix such as t or t′, as was blithely done
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Figure 2.3: Two quantum scatterers in series. The right side data for scatterer #1 become
the left side data for scatterer #2.

above in (2.68,2.69). We therefore must assume NR
c = NL

c = Nc, and that the scatterers are
separated by identical perfect regions. Practically, this imposes no limitations at all, since
the width of the perfect regions can be taken to be arbitrarily small.

EXERCISE: Show that M11 = t− r′ t′−1 r = t†−1.

The virtue of transfer matrices is that they are multiplicative. Consider, for example, two
disordered regions connected by a region of perfect conductor. The outgoing flux o from
the first region becomes the incoming flux i for the second, as depicted in fig. 2.3. Thus,
if M1 is the transfer matrix for scatterer #1, and M2 is the transfer matrix for scatterer
#2, the transfer matrix for the two scatterers in succession is M =M2M1:

(
o2

i′2

)
=
(
M11

2 M12
2

M21
2 M22

2

)(
i2
o′2

)
=

M=M2M1︷ ︸︸ ︷(
M11

2 M12
2

M21
2 M22

2

)(
M11

1 M12
1

M21
1 M22

1

) (
i1
o′1

)
. (2.72)

Clearly, then, if we have many scatterers in succession, this result generalizes to

M =MNMN−1 · · ·M1 . (2.73)

Unitarity of the S-matrix means that the transfer matrix is pseudo-unitary in that it satisfies

M†ΣM = Σ where Σ =

(
I
Nc×Nc

O
Nc×Nc

O
Nc×Nc

−I
Nc×Nc

)
. (2.74)

This, in turn, implies conservation of the pseudo-norm,

|o|2 − |i′|2 = |i|2 − |o′|2 , (2.75)
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which is simply a restatement of (2.51).

We now assert that [
M†M+ (M†M)−1 + 2 · I

]−1
= 1

4

(
t†t 0
0 t′t′†

)
. (2.76)

This result is in fact easily derived once one notes that

M−1 = ΣM†Σ =

(
M†11 −M†21

−M†12 M†22

)
. (2.77)

EXERCISE: Verify eqn. (2.76).

The 2-probe conductance (per spin channel) may now be written in terms of the transfer
matrix as

G2−probe =
2e2

h
Tr
[
M†M+ (M†M)−1 + 2 · I

]−1
(2.78)

This is known as the Pichard Formula.

2.4.2 Discussion of the Pichard Formula

It is convenient to work in an eigenbasis of the Hermitian matrix M†M. The eigenvalues
of M†M are roots of the characteristic polynomial

p(λ) = det (λ−M†M) . (2.79)

Owing to the pseudo-unitarity of M, we have

p(λ) = det
(
λ−M†M

)
= det

(
λ− ΣM−1 Σ · ΣM†−1 Σ

)
= det

(
λ− ΣM−1M†−1 Σ

)
= λ2Nc det

(
λ−1 −M†M

)/
det
(
M†M

)
, (2.80)

from which we conclude that p(λ) = 0 implies p(λ−1) = 0, and the eigenvalues of M†M
come in (λ, λ−1) pairs. We can therefore write Pichard’s formula as

G2−probe =
e2

h

Nc∑
i=1

4

λi + λ−1
i + 2

, (2.81)

where without loss of generality we assume λi ≥ 1 for each i ∈ {1, . . . , Nc}. We define the
ith localization length ξi through

λi ≡ exp
(

2L
ξi

)
=⇒ ξi =

2L
lnλi

, (2.82)
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where L is the length of the disordered region. We now have

G2−probe =
e2

h

Nc∑
i=1

2
1 + cosh(2L/ξi)

(2.83)

If Nc is finite, then as L → ∞ the {ξi} converge to definite values, for a wide range
of distributions P (Mn) for the individual scatterer transfer matrices. This follows from
a version of the central limit theorem as applied to nonabelian multiplicative noise (i.e.
products of random matrices), known as Oseledec’s theorem. We may choose to order the
eigenvalues such that λ1 < λ2 < · · · < λ

Nc
, and hence ξ1 > ξ2 > · · · > ξ

Nc
. In the L → ∞

limit, then, the conductance is dominated by the largest localization length, and

G(L) ' 4e2

h
e−2L/ξ1 (Nc finite, L→∞) . (2.84)

(We have dropped the label ‘2-probe’ on G.) The quantity ξ ≡ ξ1 is called the localization
length, and it is dependent on the (Fermi) energy: ξ = ξ(ε).

Suppose now that L is finite, and furthermore that ξ1 > 2L > ξ
Nc

. Channels for which
2L � ξj give cosh(2L/ξj) ≈ 1, and therefore contribute a quantum of conductance e2/h
to G. These channels are called open. Conversely, when 2L � ξj , we have cosh(2L/ξj) ∼
1
2 exp(2L/ξj)� 1, and these closed channels each contribute ∆Gj = (2e2/h)e−2L/ξj to the
conductance, a negligible amount. Thus,

G(L) ' e2

h
Nopen

c , Nopen
c ≡

Nc∑
j=1

Θ(ξj − 2L) . (2.85)

Of course, N closed
c = Nc −Nopen

c , although there is no precise definition for open vs. closed
for channels with ξj ∼ 2L. This discussion naturally leads us to the following classification
scheme:

• When L > ξ1, the system is in the localized regime. The conductance vanishes expo-
nentially with L according to G(L) ≈ (4e2/h) exp(−2L/ξ), where ξ(ε) = ξ1(ε) is the
localization length. In the localized regime, there are no open channels: Nopen

c = 0.

• When Nopen
c = `Nc/L, where ` is the elastic scattering length, one is in the Ohmic

regime. In the Ohmic regime, for a d-dimensional system of length L and ((d − 1)-
dimensional) cross-sectional area A,

GOhmic ≈
e2

h

`

L
kd−1

F A =
e2

h
kd−1

F ` · A
L
. (2.86)

Note that G is proportional to the cross sectional area A and inversely proportional
to the length L, which is the proper Ohmic behavior: G = σ A/L, where

σ ≈ e2

h
kd−1

F ` (2.87)

is the conductivity.
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• When L < ξ
Nc

, all the channels are open: Nopen
c = Nc. The conductance is

G(L) =
e2

h
Nc ≈

e2

h
kd−1

F A . (2.88)

This is the ballistic regime.

If we keep Nc ∝ (kFL)d−1, then for L → ∞ Oseledec’s theorem does not apply, because
the transfer matrix is ∞-dimensional. If ξ1(ε) nonetheless remains finite, then G(L) ≈
(4e2/h) exp(−L/ξ) → 0 and the system is in the localized regime. If, on the other hand,
ξ1(ε) diverges as L → ∞ such that exp(L/ξ1) is finite, then G > 0 and the system is a
conductor.

If we define νi ≡ lnλi, the dimensionless conductance g = (h/e2)G is given by

g = 2

∞∫
0

dν
σ(ν)

1 + cosh ν
, (2.89)

where

σ(ν) =
Nc∑
i=1

δ(ν − νi) (2.90)

is the density of ν values. This distribution is normalized so that
∫∞

0 dν σ(ν) = Nc. Spec-
tral properties of the {νi} thus determine the statistics of the conductance. For example,
averaging over disorder realizations gives

〈g〉 = 2

∞∫
0

dν

〈
σ(ν)

〉
1 + cosh ν

. (2.91)

The average of g2, though, depends on the two-point correlation function, viz.

〈g2〉 = 4

∞∫
0

dν

∞∫
0

dν ′
〈
σ(ν)σ(ν ′)

〉
(1 + cosh ν)(1 + cosh ν ′)

. (2.92)

2.4.3 Two Quantum Resistors in Series

Let us consider the case of two scatterers in series. For simplicity, we will assume that
Nc = 1, in which case the transfer matrix for a single scatterer may be written as

M =
(

1/t∗ −r∗/t∗
−r/t′ 1/t′

)
. (2.93)

A pristine segment of wire of length L has a diagonal transfer matrix

N =
(
eiβ 0
0 e−iβ

)
, (2.94)
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where β = kL. Thus, the composite transfer matrix for two scatterers joined by a length L
of pristine wire is M =M2NM1, i.e.

M =
(

1/t∗2 −r∗2/t∗2
−r2/t

′
2 1/t′2

)(
eiβ 0
0 e−iβ

)(
1/t∗1 −r∗1/t∗1
−r1/t

′
1 1/t′1

)
. (2.95)

In fact, the inclusion of the transfer matrix N is redundant; the phases e±iβ can be com-
pletely absorbed via a redefinition of {t1, t′1, r1, r

′
1}.

Extracting the upper left element of M gives

1
t∗

=
eiβ − e−iβ r′∗1 r∗2

t∗1t
∗
2

, (2.96)

hence the transmission coefficient T for the composite system is

T =
T1T2

1 +R1R2 − 2
√
R1R2 cos δ

(2.97)

where δ = 2β + arg(r′1r2). The dimensionless Landauer resistance is then

R =
R

T
=
R1 +R2 − 2

√
R1R2 cos δ

T1T2

= R1 +R2 + 2R1R2 − 2
√
R1R2(1 +R1)(1 +R2) cos δ . (2.98)

If we average over the random phase δ, we obtain

〈R〉 = R1 +R2 + 2R1R2 . (2.99)

The first two terms correspond to Ohm’s law. The final term is unfamiliar and leads to
a divergence of resistivity as a function of length. To see this, imagine that that R2 =
% dL is small, and solve (2.99) iteratively. We then obtain a differential equation for the
dimensionless resistance R(L):

dR = (1 + 2R) % dL =⇒ R(L) = 1
2

(
e2%L − 1

)
. (2.100)

In fact, the distribution PL(R) is extremely broad, and it is more appropriate to average
the quantity ln(1 +R). Using

2π∫
0

dδ

2π
ln(a− b cos δ) = ln

(
1
2a+ 1

2

√
a2 − b2

)
(2.101)

with

a = 1 +R1 +R2 + 2R1R2 (2.102)

b = 2
√
R1R2(1 +R1)(1 +R2) , (2.103)
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we obtain the result
〈ln(1 +R)〉 = ln(1 +R1) + ln(1 +R2) . (2.104)

We define the quantity
x(L) ≡ ln

{
1 +R(L)

}
, (2.105)

and we observe 〈
x(L)

〉
= %L (2.106)〈

ex(L)
〉

= 1
2

(
e2%L + 1

)
. (2.107)

Note that 〈ex〉 6= e〈x〉. The quantity x(L) is an appropriately self-averaging quantity in
that its root mean square fluctuations are small compared to its average, i.e. it obeys the
central limit theorem. On the other hand, R(L) is not self-averaging, i.e. it is not normally
distributed.

Abelian Multiplicative Random Processes

Let p(x) be a distribution on the nonnegative real numbers, normalized according to

∞∫
0

dx p(x) = 1 , (2.108)

and define

X ≡
N∏
i=1

xi , Y ≡ lnX =
N∑
i=1

lnxi . (2.109)

The distribution for Y is

PN (Y ) =

∞∫
0

dx1

∞∫
0

dx2 · · ·
∞∫

0

dxN p(x1) p(x2) · · · p(xN ) δ

(
Y −

N∑
i=1

lnxi

)

=

∞∫
−∞

dω

2π
eiωY


∞∫

0

dx p(x) e−iω lnx


N

=

∞∫
−∞

dω

2π
eiωY

[
1− iω〈lnx〉 − 1

2ω
2〈ln2x〉+O(ω3)

]N

=

∞∫
−∞

dω

2π
eiω(Y−N〈lnx〉) e−

1
2Nω

2(〈ln2x〉−〈lnx〉2)+O(ω3)

=
1√

2πNσ2
e−(Y−Nµ)2/2Nσ2 ·

{
1 +O(N−1)

}
, (2.110)

with
µ = 〈lnx〉 , σ2 = 〈ln2x〉 − 〈lnx〉2 (2.111)
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and 〈
f(x)

〉
≡
∞∫

0

dx p(x) f(x) . (2.112)

Thus, Y is normally distributed with mean 〈Y 〉 = Nµ and standard deviation 〈(Y −Nµ)2〉 =
Nσ2. This is typical for extensive self-averaging quantities: the average is proportional to
the size N of the system, and the root mean square fluctuations are proportional to

√
N .

Since limN→∞ Yrms/〈Y 〉 ∼ σ/
√
Nµ→ 0, we have that

PN→∞(Y ) ' δ
(
Y −Nµ

)
. (2.113)

This is the central limit theorem (CLT) at work. The quantity Y is a sum of independent
random variables: Y =

∑
i lnxi, and is therefore normally distributed with a mean Ȳ = Nµ

and standard deviation
√
Nσ, as guaranteed by the CLT. On the other hand, X = exp(Y )

is not normally distributed. Indeed, one readily computes the moments of X to be

〈Xk〉 = ekNµ eNk
2/2σ2

, (2.114)

hence
〈Xk〉
〈X〉k

= eNk(k−1)/2σ2
, (2.115)

which increases exponentially with N . In particular, one finds√
〈X2〉 − 〈X〉2
〈X〉

=
(
eN/σ

2 − 1
)1/2

. (2.116)

The multiplication of random transfer matrices is a more difficult problem to analyze,
owing to its essential nonabelian nature. However, as we have seen in our analysis of series
quantum resistors, a similar situation pertains: it is the logarithm ln(1 +R), and not the
dimensionless resistance R itself, which is an appropriate self-averaging quantity.

2.4.4 Two Quantum Resistors in Parallel

The case of parallel quantum resistors is more difficult than that of series resistors. The
reason for this is that the conduction path for parallel resistances is multiply connected, i.e.
electrons can get from start to finish by traveling through either resistor #1 or resistor #2.

Consider electrons with wavevector k > 0 moving along a line. The wavefunction is

ψ(x) = I eikx +O′ e−ikx , (2.117)

hence the transfer matrix M for a length L of pristine wire is

M(L) =
(
eikL 0

0 e−ikL

)
. (2.118)



18 CHAPTER 2. MESOSCOPIA

Now let’s bend our wire of length L into a ring. We therefore identify the points x = 0 and
x = L = 2πR, where R is the radius. In order for the wavefunction to be single-valued we
must have [

M(L)− I
]( I

O′

)
= 0 , (2.119)

and in order to have a nontrivial solution (i.e. I and O′ not both zero), we must demand
det(M− I) = 0, which says cos kL = 1, i.e. k = 2πn/L with integer n. The energy is then
quantized: εn = ε‖(k = 2πn/L).

Next, consider the influence of a vector potential on the transfer matrix. Let us assume the
vector potential A along the direction of motion is nonzero over an interval from x = 0 to
x = d. The Hamiltonian is given by the Peierls substitution,

H = ε‖

(
− i∂x + e

~cA(x)
)
. (2.120)

Note that we can write

H = Λ†(x) ε‖(−i∂x) Λ(x) (2.121)

Λ(x) = exp

{
ie

~c

x∫
0

dx′A(x′)

}
. (2.122)

Hence the solutions ψ(x) to Hψ = εψ are given by

ψ(x) = I Λ†(x) eikx +O′ Λ†(x) e−ikx . (2.123)

The transfer matrix for a segment of length d is then

M(d,A) =
(
eikd e−iγ 0

0 e−ikd e−iγ

)
(2.124)

with

γ =
e

~c

d∫
0

dxA(x) . (2.125)

We are free to choose any gauge we like for A(x). The only constraint is that the gauge-
invariant content, which is encoded in he magnetic fluxes through every closed loop C,

ΦC =
∮
C

A · dl , (2.126)

must be preserved. On a ring, there is one flux Φ to speak of, and we define the dimensionless
flux φ = eΦ/~c = 2πΦ/φ0, where φ0 = hc/e = 4.137×10−7 G·cm2 is the Dirac flux quantum.
In a field of B = 1 kG, a single Dirac quantum is enclosed by a ring of radius R = 0.11µm.
It is convenient to choose a gauge in which A vanishes everywhere along our loop except for
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Figure 2.4: Energy versus dimensionless magnetic flux for free electrons on a ring. The
degeneracies are lifted in the presence of a crystalline potential.

a vanishingly small region, in which all the accrued vector potential piles up in a δ-function
of strength Φ. The transfer matrix for this infinitesimal region is then

M(φ) =
(
eiφ 0
0 eiφ

)
= eiφ · I . (2.127)

If k > 0 corresponds to clockwise motion around the ring, then the phase accrued is −γ,
which explains the sign of φ in the above equation.

For a pristine ring, then, combining the two transfer matrices gives

M =
(
eikL 0

0 e−ikL

)(
eiφ 0
0 eiφ

)
=
(
eikL eiφ 0

0 e−ikL eiφ

)
, (2.128)

and thus det(M− I) = 0 gives the solutions,

kL = 2πn− φ (right-movers)
kL = 2πn+ φ (left-movers) .

Note that different n values are allowed for right- and left-moving branches since by assump-
tion k > 0. We can simplify matters if we simply write ψ(x) = Aeikx with k unrestricted
in sign, in which case k = (2πn − φ)/L with n chosen from the entire set of integers. The
allowed energies for free electrons are then

εn(φ) =
2π2~2

mL2
·
(
n− φ

2π
)2
, (2.129)

which are plotted in fig. 2.4.
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Figure 2.5: Scattering problem for a ring enclosing a flux Φ. The square and triangular
blocks represent scattering regions and are describes by 2× 2 and 3× 3 S-matrices, respec-
tively. The dot-dash line represents a cut across which the phase information due to the
enclosed flux is accrued discontinuously.

Now let us add in some scatterers. This problem was first considered in a beautiful paper
by Büttiker, Imry, and Azbel, Phys. Rev. A 30, 1982 (1984). Consider the ring geometry
depicted in fig. 2.5. We want to compute the S-matrix for the ring. We now know
how to describe the individual quantum resistors #1 and #2 in terms of S-matrices (or,
equivalently, M-matrices). Assuming there is no magnetic field penetrating the wire (or
that the wire itself is infinitesimally thin), we have S = St for each scatterer. In this case,
we have t = t′ =

√
T eiα. We know |r|2 = |r′|2 = 1− |t|2, but in general r and r′ may have

different phases. The most general 2× 2 transfer matrix, under conditions of time-reversal
symmetry, depends on three parameters, which may be taken to be the overall transmission
probability T and two phases:

M(T, α, β) =
1√
T

(
eiα

√
1− T eiβ√

1− T e−iβ e−iα

)
. (2.130)

We can include the effect of free-particle propagation in the transfer matrix M by multi-
plying M on the left and the right by a free propagation transfer matrix of the form

N =
(
eiθ/4 0

0 e−iθ/4

)
, (2.131)

where θ = kL = 2πkR is the phase accrued by a particle of wavevector k freely propagating
once around the ring. N is the transfer matrix corresponding to one quarter turn around
the ring. One easily finds

M→NM(T, α, β)N =M(T, α+ 1
2θ, β). (2.132)

For pedagogical reasons, we will explicitly account for the phases due to free propagation,
and write (

β1

α′1

)
= N M1N

(
α1

β′1

)
,

(
β′2
α2

)
= N M̃2N

(
α′2
β2

)
, (2.133)



2.4. MULTICHANNEL SYSTEMS 21

where M̃2 is the transfer matrix for scatterer #2 going from right to left.

EXERCISE: Show that the right-to-left transfer matrix M̃ is related to the left-to-right
transfer matrix M according to

M̃ = Λ ΣM†Σ Λ , (2.134)

where

Σ =
(

1 0
0 −1

)
, Λ =

(
0 1
1 0

)
. (2.135)

We now have to model the connections between the ring and the leads, which lie at the
confluence of three segments. Accordingly, these regions are described by 3× 3 S-matrices.
The constraints S = S† (unitarity) and S = St (time-reversal symmetry) reduce the number
of independent real parameters in S from 18 to 5. Further assuming that the scattering
is symmetric with respect to the ring branches brings this number down to 3, and finally
assuming S is real reduces the dimension of the space of allowed S-matrices to one. Under
these conditions, the most general 3× 3 S-matrix may be written−(a+ b)

√
ε
√
ε√

ε a b√
ε b a

 (2.136)

where

(a+ b)2 + 2ε = 1 (2.137)

a2 + b2 + ε = 1 . (2.138)

The parameter ε, which may be taken as a measure of the coupling between the ring and
the leads (ε = 0 means ring and leads are decouped) is restricted to the range 0 ≤ ε ≤ 1

2 .
There are four solutions for each allowed value of ε:

a = ±1
2

(√
1− 2ε− 1

)
, b = ±1

2

(√
1− 2ε+ 1

)
(2.139)

and
a = ±1

2

(√
1− 2ε+ 1

)
, b = ±1

2

(√
1− 2ε− 1

)
. (2.140)

We choose the first pair, since it corresponds to the case |b| = 1 when ε = 0, i.e. perfect
transmission through the junction. We choose the top sign in (2.139).

We therefore have at the left contact, o′

α2

α1

 =

−(aL + bL)
√
ε
L

√
ε
L√

ε
L

aL bL√
ε
L

bL aL


 i
β′2
β′1

 , (2.141)

and at the right contact o
α̃′1
α′2

 =

−(aR + bR)
√
ε
R

√
ε
R√

ε
R

aR bR√
ε
R

bR aR


 i′

β̃1

β2

 , (2.142)
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Figure 2.6: Two-probe conductance G(φ, κ) of a model ring with two scatterers. The
enclosed magnetic flux is φ~c/e, and κ = 2πkR (ring radius R). G vs. φ curves for various
values of κ are shown.

where accounting for the vector potential gives us

β̃1 = eiφ β1 , α̃′1 = eiφ α′1 . (2.143)

We set i = 1 and i′ = 0, so that the transmission and reflection amplitudes are obtained
from t = o and r = o′.

From (2.141), we can derive the relation

(
α1

β′1

)
=

QL︷ ︸︸ ︷
1

bL

(
b2L − a2

L aL

−aL 1

) (
β′2
α2

)
+
√
εL

bL

(
bL − aL

−1

)
. (2.144)

Similarly, from (2.142), we have

(
α′2
β2

)
=

QR︷ ︸︸ ︷
1

bR

(
b2R − a2

R aR

−aR 1

)
eiφ
(
β1

α′1

)
. (2.145)

The matrices QL and QR resemble transfer matrices. However, they are not pseudo-unitary:
Q†ΣQ 6= Σ. This is because some of the flux can leak out along the leads. Indeed, when
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Figure 2.7: Two-probe conductance G(φ, κ) of a model ring with two scatterers. The
enclosed magnetic flux is φ~c/e, and κ = 2πkR (ring radius R). G vs. φ curves for various
values of κ are shown. The coupling between leads and ring is one tenth as great as in
fig. 2.6, and accordingly the resonances are much narrower. Note that the resonances at
κ = 0.45π and κ = 0.85π are almost completely suppressed.

ε = 0, we have b = 1 and a = 0, hence Q = 1, which is pseudo-unitary (i.e. flux preserving).
Combining these results with those in (2.133), we obtain the solution(

α1

β′1

)
=
{

I− eiφQLN M̃2N QRN M1N
}−1
√
εL

bL

(
bL − aL

−1

)
. (2.146)

From this result, using (2.133), all the flux amplitudes can be obtained.

We can define the effective ring transfer matrix P as

P ≡ eiφQLN M̃2N QRN M1N , (2.147)

which has the following simple interpretation. Reading from right to left, we first move 1
4 -

turn clockwise around the ring (N ). Then we encounter scatterer #1 (M1). After another
quarter turn (N ), we encounter the right T-junction (QR). Then it’s yet another quarter
turn (N ) until scatterer #2 (M2), and one last quarter turn (N ) brings us to the left
T-junction (QL), by which point we have completed one revolution. As the transfer matrix
acts on both right-moving and left-moving flux amplitudes, it accounts for both clockwise
as well as counterclockwise motion around the ring. The quantity{

I− P
}−1 = 1 + P + P2 + P3 + . . . , (2.148)

then sums up over all possible integer windings around the ring. In order to properly account
for the effects of the ring, an infinite number of terms must be considered; these may be
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Figure 2.8: Two-probe conductance G(φ, κ) of a model ring with two scatterers. The
enclosed magnetic flux is φ~c/e, and κ = 2πkR (ring radius R). G vs. κ curves for various
values of φ are shown.

resummed into the matrix inverse in (2.147). The situation is analogous to what happens
when an electromagnetic wave reflects off a thin dielectric slab. At the top interface, the
wave can reflect. However, it can also refract, entering the slab, where it may undergo an
arbitrary number of internal reflections before exiting.

The transmission coefficient t is just the outgoing flux amplitude: t = o. We have from
(2.142,2.133) that

t =
√
εR
(
β1 e

iφ + β2

)
=
√
εR

bR

(
bR − aR 1

)(β1

α′1

)
=
√
εL εR

bL bR

(
Y−1

12 + Y−1
22 − Y

−1
11 − Y

−1
21

)
(2.149)

where

Y = QLN M̃2N QR − e−iφN−1M−1
1 N

−1 . (2.150)

It is straightforward to numerically implement the above calculation. Sample results are
shown in figs. 2.6 and 2.8.
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2.5 Universal Conductance Fluctuations in Dirty Metals

The conductance of a disordered metal is a function of the strength and location of the
individual scatterers. We now ask, how does the conductance fluctuate when the position
or strength of a scatterer or a group of scatterers is changed. From the experimental point
of view, this seems a strange question to ask, since we generally do not have direct control
over the position of individual scatterers within a bulk system. However, we can imagine
changing some external parameter, such as the magnetic field B or the chemical potential µ
(via the density n). Using computer modeling, we can even ‘live the dream’ of altering the
position of a single scatterer to investigate its effect on the overall conductance. Näıvely, we
would expect there to be very little difference in the conductance if we were to, say, vary the
position of a single scatterer by a distance `, or if we were to change the magnetic field by
∆B = φ0/A, where A is the cross sectional area of the system. Remarkably, though, what
is found both experimentally and numerically is that the conductance exhibits fluctuations
with varying field B, chemical potential µ, or impurity configuration (in computer models).
The root-mean-square magnitude of these fluctuations for a given sample is the same as
that between different samples, and is on the order δG ∼ e2/h. These universal conductance
fluctuations (UCF) are independent on the degree of disorder, the sample size, the spatial
dimensions, so long as the inelastic mean free path (or phase breaking length) satisfies
Lφ > L, i.e. the system is mesoscopic.

Theoretically the phenomenon of UCF has a firm basis in diagrammatic perturbation theory.
Here we shall content ourselves with understanding the phenomenon on a more qualitative
level, following the beautiful discussion of P. A. Lee in Physica 140A, 169 (1986). We begin
with the multichannel Landauer formula,

G =
e2

h
Tr tt† =

e2

h

Nc∑
a,j=1

|taj |2 . (2.151)

The transmission amplitudes taj can be represented as a quantum mechanical sum over
paths γ,

taj =
∑
γ

Aaj(γ) , (2.152)

where Aaj(γ) is the probability amplitude for Feynman path γ to connect channels j and a.
The sum is over all such Feynman paths, and ultimately we must project onto a subspace of
definite energy – this is, in Lee’s own words, a ‘heuristic argument’. Now assume that the
Aaj(γ) are independent complex random variables. The fluctuations in |taj |2 are computed
from 〈

|taj |4
〉

=
∑
γ1,γ2
γ3,γ4

〈
Aaj(γ1)A∗aj(γ2)Aaj(γ3)A∗aj(γ4)

〉
= 2
〈∑

γ

∣∣Aaj(γ)
∣∣2〉2

+
〈∑

γ

∣∣Aaj(γ)
∣∣4〉

= 2
〈
|taj |2

〉2 ·
{

1 +O(M−1)
}
, (2.153)



26 CHAPTER 2. MESOSCOPIA

where M is the (extremely large) number of paths in the sum over γ. As the O(M−1) term
is utterly negligible, we conclude 〈

|taj |4
〉
−
〈
|taj |2

〉2〈
|taj |2

〉2 = 1 . (2.154)

Now since

var(G) = 〈G2〉 − 〈G〉2 (2.155)

=
e4

h2

∑
a,a′
j,j′

{〈
|taj |2 |ta′j′ |2

〉
−
〈
|taj |2

〉〈
|taj |2

〉}
, (2.156)

we also need to know about the correlation between |taj |2 and |ta′j′ |2. The simplest assump-
tion is to assume they are uncorrelated unless a = a′ and j = j′, i.e.〈

|taj |2 |ta′j′ |2
〉
−
〈
|taj |2

〉〈
|taj |2

〉
=
(〈
|taj |4

〉
−
〈
|taj |2

〉2
)
δaa′ δjj′ , (2.157)

in which case the conductance is a given by a sum of N2
c independent real random variables,

each of which has a standard deviation equal to its mean, i.e. equal to
〈
|taj |2

〉
. According

to the central limit theorem, then, the rms fluctuations of G are given by

∆G =
√

var(G) =
e2

h
Nc

〈
|taj |2

〉
. (2.158)

Further assuming that we are in the Ohmic regime whereG = σ Ld−2, with σ ≈ (e2/h) kd−1
F `,

and Nc ≈ (kFL)d−1, we finally conclude

〈
|taj |2

〉
≈ 1
Nc
· `
L

=⇒ ∆G ≈ e2

h

`

L
. (2.159)

This result is much smaller than the correct value of ∆G ∼ (e2/h).

To reiterate the argument in terms of the dimensionless conductance g,

g =
∑
a,j

|taj |2 ' Nc ·
`

L
=⇒

〈
|taj |2

〉
=

g

N2
c

(2.160)

var(g) =
∑
a,a′
j,j′

{〈
|taj |2 |ta′j′ |2

〉
−
〈
|taj |2

〉〈
|taj |2

〉}

≈
∑
aj

{〈
|taj |4

〉
−
〈
|taj |2

〉2
}

=
∑
aj

〈
|taj |2

〉2 ≈ N2
c ·
( g

N2
c

)2
=

g2

N2
c

(2.161)

=⇒
√

var(g) ≈ g

Nc
=
`

L
(WRONG!) . (2.162)
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What went wrong? The problem lies in the assumption that the contributions Aaj(γ) are
independent for different paths γ. The reason is that in disordered systems there are certain
preferred channels within the bulk along which the conduction paths run. Different paths
γ will often coincide along these channels. A crude analogy: whether you’re driving from
La Jolla to Burbank, or from El Cajon to Malibu, eventually you’re going to get on the 405
freeway – anyone driving from the San Diego area to the Los Angeles area must necessarily
travel along one of a handful of high-volume paths. The same is not true of reflection,
though! Those same two hypothetical drivers executing local out-and-back trips from home
will in general travel along completely different, hence uncorrelated, routes. Accordingly,
let us compute var(Nc− g), which is identical to var(g), but is given in terms of a sum over
reflection coefficients. We will see that making the same assumptions as we did in the case
of the transmission coefficients produces the desired result. We need only provide a sketch
of the argument:

Nc − g =
∑
i,j

|rij |
2 ' Nc ·

(
1− `

L

)
=⇒

〈
|rij |

2
〉

=
Nc − g
N2

c

, (2.163)

so

var(Nc − g) =
∑
i,i′
j,j′

{〈
|rij |

2 |ri′j′ |
2
〉
−
〈
|rij |

2
〉〈
|ri′j′ |

2
〉}

≈
∑
ij

{〈
|rij |

4
〉
−
〈
|rij |

2
〉2
}

=
∑
ij

〈
|rij |

2
〉2 ≈ N2

c ·
(Nc − g

N2
c

)2
=
(

1− `

L

)2
(2.164)

=⇒
√

var(Nc − g) =
√

var(g) =
(

1− `

L

)
(2.165)

The assumption of uncorrelated reflection paths is not as problematic as that of uncorrelated
transmission paths. Again, this is due to the existence of preferred internal channels within
the bulk, along which transmission occurs. In reflection, though there is no need to move
along identical segments.

There is another bonus to thinking about reflection versus transmission. Let’s express the
reflection probability as a sum over paths, viz.

|rij |
2 =

∑
γ,γ′

Aij(γ)A∗ij(γ′) . (2.166)

Each path γ will have a time-reversed mate γT for which, in the absence of external magnetic
fields,

Aij(γ) = Aij(γT) . (2.167)

This is because the action functional,

S[r(t)] =

t2∫
t1

dt
{

1
2mṙ

2 − V (r)− e

c
A(r) · ṙ

}
(2.168)
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satisfies
S[r(t)] = S[r(−t)] if B = 0 . (2.169)

There is, therefore, an extra negative contribution to the conductance G arising from phase
coherence of time-reversed paths. In the presence of an external magnetic field, the path
γ and its time-reversed mate γT have a relative phase η = 4πΦγ/φ0, where Φγ is the
magnetic flux enclosed by the path γ. A magnetic field, then, tends to destroy the phase
coherence between time-reversed paths, and hence we expect a positive magnetoconductance
(i.e. negative magnetoresistance) in mesoscopic disordered metals.

Conductance Fluctuations in Metallic Rings

The conductance of a ring must be periodic under Φ → Φ + nφ0 for any integer n – rings
with flux differing by an integer number of Dirac quanta are gauge-equivalent, provided no
magnetic field penetrates the ring itself. The conductance as a function of the enclosed flux
Φ must be of the form

G(Φ) = Gcl +
∞∑
m=1

Gm cos
(2πmΦ

φ0
+ αm

)
(2.170)

where Gcl is the classical (Boltzmann) conductance of the ring. The second harmonic Gm=2

is usually detectable and is in many cases much larger than the m = 1 term. The origin
of the m = 2 term, which is periodic under Φ → Φ + 1

2φ0, lies in the interference between
time-reversed paths of winding number ±1. The m = 1 fundamental is easily suppressed,
e.g. by placing several rings in series.

2.5.1 Weak Localization

A more rigorous discussion of enhanced backscattering was first discussed by Altshuler,
Aronov, and Spivak (AAS) in 1981. AAS showed that there are corrections to Boltzmann
transport of the form σ = σ0 + δσ, where σ0 = ne2τ/m∗ is the Drude conductivity and
(including a factor of 2 for spin),

δσ = −2e2

h
`2 · 1

V

∫
ddr C(r, r) , (2.171)

where ` is the elastic mean free path and C(r, r′) is the Cooperon propagator, which satisfies{
− `2

(
∇ +

2ie
~c
A(r)

)2
+

τ

τφ

}
C(r, r′) = δ(r − r′) , (2.172)

where τφ is the inelastic collision time, τφ = L2
φ/D, where D = vF` = `2/τ is the diffusion

constant. The linear differential operator

L = −`2
(
∇ +

2ie
~c
A(r)

)2
(2.173)
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bears a strong resemblance to the Hamiltonian of a particle of charge e∗ = 2e in an external
magnetic field B = ∇×A. Expanding in eigenfunctions of L, we obtain the solution(

L+
τ

τφ

)
C(r, r′) = δ(r − r′) (2.174)

Lψα(r) = λαψα(r) (2.175)

C(r, r′) =
∑
α

ψα(r)ψ∗α(r′)
λα + τ

τφ

, (2.176)

which resembles a Green’s function from quantum mechanics, where the energy parameter
is identified with −τ/τφ. There is accordingly a path integral representation for C(r, r′):

C(r1, r2) =
∫
ds e−isτ/τφ

∫
r(0)=r1

r(s)=r2

Dr[u] exp

{
i

s∫
0

du

[
1

4`2
(∂r
∂u

)2
− 2e

~c
A(r) · ∂r

∂u

]}
. (2.177)

Notice that there is no potential term V (r) in the action of (2.177). The effect of the static
random potential here is to provide a ‘step length’ ` for the propagator. According to the
AAS result (2.171), the corrections to the conductivity involve paths which begin and end
at the same point r in space. The charge e∗ = 2e which appears in the Cooperon action
arises from adding up contributions due to time-reversed paths, as we saw earlier.

Let’s try to compute δσ, which is called the weak localization correction to the conductivity.
In the absence of an external field, the eigenvalues of L are simply k2`2, where kµ = 2πnµ/L.
We then have

C(r, r) =
∫

ddk

(2π)d
1

k2`2 + τ
τφ

. (2.178)

A cutoff Λ is needed in dimensions d ≥ 2 in order to render the integral convergent in the
ultraviolet. This cutoff is the inverse step size for diffusion: Λ ∼ `−1. This gives, for τ � τφ,

δσd ∼
e2

h
·



−`−1 (d = 3)

− ln(τφ/τ) (d = 2)

−`
√
τφ/τ (d = 1) .

(2.179)

Let us now compute the magnetoconductance in d = 2. In the presence of a uniform
magnetic field, L has evenly spaced eigenvalues

λn = (n+ 1
2)
( 2`
`B

)2
, (2.180)

where `B =
√

~c/eB is the magnetic length (for a charge q = −e electron). Each of these
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Landau levels has a macroscopic degeneracy of 2eBA/hc = A/π`2B, Thus,

δσ(B) = −2e2

h

`2

π`2B

`2B/4`
2∑

n=0

1
(n+ 1

2)4`2

`2B
+ τ

τφ

= − e2

2πh

`2B/4`
2∑

n=0

1

n+ 1
2 + `2B

L2
φ

, (2.181)

where we have invoked τ/τφ = `2/L2
φ. The magnetoconductance is then

δσ(B)− δσ(0) = − 1
2π

e2

h

{
Ψ
(1

2
+
`2B
4`2
)
−Ψ

(1
2

+
`2B

4L2
φ

)}
, (2.182)

where

Ψ(z) =
1

Γ(z)
dΓ(z)
dz

= ln z +
1
2z
− 1

12z2
+ . . . (2.183)

is the digamma function. If the field is weak, so that `B � `, then

δσ(B)− δσ(0) = +
1

6π
e2

h

(Lφ
`B

)2
, (2.184)

which is positive, as previously discussed. The magnetic field suppresses phase coherence
between time-reversed paths, and thereby promotes diffusion by suppressing the resonant
backscattering contributions to δσ. At large values of the field, the behavior is logarithmic.
Generally, we can write

δσ(B)− δσ(0) =
1

2π
e2

h
f
( B
Bφ

)
, (2.185)

where
2πBφ
B
≡

`2B
4L2

φ

=⇒ Bφ =
φ0

8πL2
φ

(2.186)

and

f(x) = lnx+ Ψ
(

1
2 + 1

x

)
=

{
x2

24 as x→ 0
lnx− 1.96351 . . . as x→∞ .

(2.187)

2.6 Anderson Localization

In 1958, P. W. Anderson proposed that static disorder could lead to localization of electronic
eigenstates in a solid. Until this time, it was generally believed that disorder gave rise to
an elastic scattering length ` and a diffusion constant D = vF`. The diffusion constant is
related to the electrical conductivity through the Einstein relation: σ = 1

2e
2D(εF)N (εF). If

the states at the Fermi level are localized, then D(εF) = 0.
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Anderson considered an electron propagating in a random potential:

H = − ~2

2m
∇ 2 + V (r) , (2.188)

where V (r) is chosen from an ensemble of random functions. Physically, V (r) is bounded
and smooth, although often theorists often study uncorrelated ‘white noise’ potentials where
the ensemble is described by the distribution functional

P [V (r)] = exp
{
− 1

2γ

∫
ddr V 2(r)

}
, (2.189)

for which 〈
V (r)V (r′)

〉
= γ δ(r − r′) . (2.190)

A tight binding version of this model would resemble

H = −t
∑
〈ij〉

(
c†i cj + c†j ci

)
+
∑
i

εi c
†
i ci , (2.191)

where the single site energies {εi} are independently distributed according to some function
p(ε). The first term can be diagonalized by Fourier transform:

H0 = −t
∑
〈ij〉

(
c†i cj + c†j ci

)
= −zt

∑
k

γk c
†
k ck , (2.192)

where γk = z−1
∑
δ e

ik·δ, where δ is a nearest neighbor direct lattice vector and z is the
lattice coordination number; the bandwidth is 2zt. What happens when we add the random
potential term to (2.192)? Suppose the width of the distribution p(ε) is W , e.g. p(ε) =
W−1 Θ(1

4W
2 − ε2), with W � zt. We expect that the band edges shift from ±zt to

±(zt+ 1
2W ). The density of states must vanish for |ε| > zt+ 1

2W ; the regions in the vicinity
of ±(zt+ 1

2W ) are known as Lifshitz tails.

Aside from the formation of Lifshitz tails, the density of states doesn’t change much. What
does change is the character of the eigenfunctions. Suppose we can find a region of con-
tiguous sites all of which have energies εi ≈ 1

2W . Then we could form an approximate
eigenstate by concentrating the wavefunction in this region of sites, setting its phase to
be constant throughout. This is an example of a localized state. We can think of such a
state as a particle in a box – the electron binds itself to local fluctuations in the potential.
Outside this region, the wavefunction decays, typically exponentially. Scattering states are
then extended states, and are associated with ‘average’ configurations of the {εi}. The
typical spatial extent of the localized states is given by the localization length ξ(ε). The
localization length diverges at the mobility edges as

ξ(ε) ∼ |ε− εc|−ν . (2.193)

There is no signature of the mobility edge in the density of states itself – N (ε) is completely
smooth through the mobility edge εc.
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Figure 2.9: Schematic picture of density of states in a disordered system showing mobility
edges (dashed lines) and localized states in band tails.

2.6.1 Characterization of Localized and Extended States

One way of characterizing the localization properties of quantum mechanical eigenstates (of
H) is to compute the participation ratio Q. The inverse participation ratio for the state α
is given by

Q−1
α =

∑
i

∣∣ψα(i)
∣∣4/(∑

i

∣∣ψα(i)
∣∣2)2

(discrete) (2.194)

=
∫
ddx
∣∣ψα(x)

∣∣4/(∫ ddx ∣∣ψα(x)
∣∣2)2

(continuous) (2.195)

Consider the discrete case. If ψα is localized on a single site, then we have
∑

i

∣∣ψα(i)
∣∣k = 1

for all k, i.e. Qα = 1. But if ψα is spread evenly over N sites, then Q−1
α = N/N2 = N−1,

and Qα = N . Hence, Qα tells us approximately how many states
∣∣ i 〉 participate in the

state
∣∣ψα 〉. The dependence of Qα on the system size (linear dimension) L can be used as

a diagnostic: ∣∣ψα 〉 localized =⇒ Qα ∝ L0 (2.196)∣∣ψα 〉 extended =⇒ Qα ∝ Lβ , (2.197)

where β > 0.

Another way to distinguish extended from localized states is to examine their sensitivity to
boundary conditions:

ψ(x1 , . . . , xµ + L , . . . , xd) = eiθµ ψ(x1 , . . . , xµ , . . . , xd) , (2.198)
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where µ ∈ {1, . . . , d}. For periodic boundary conditions θµ = 0, while antiperiodic boundary
conditions have θµ = π. For plane wave states, this changes the allowed wavevectors, so
that kµ → kµ + π/L. Thus, for an extended state,

δεext = εpbc − εapbc ' ∂ε

∂k
δk ∝ L−1 . (2.199)

For a localized state,
δεloc ∝ e−L/ξ(ε) . (2.200)

One defines the dimensionless Thouless number

Th(ε, L) =
∣∣εpbc − εapbc

∣∣ · N (ε) . (2.201)

In the vicinity of a mobility edge, a scaling hypothesis suggests

Th(ε, L) = f
(
L/ξ(ε)

)
, (2.202)

where f(x) is a universal scaling function.

As the Fermi level passes through the mobility edge into a region of localized states, the
conductivity vanishes as

σ(εF) ∼ |εF − εc|s , (2.203)

where s > 0. Since the density is a continuous function of εF, this can also be turned into
a statement about the behavior of σ(n):

σ(n) ∼ (n− nc)s Θ(n− nc) . (2.204)

2.6.2 Numerical Studies of the Localization Transition

Pioneering work in numerical studies of the localization transition was performed by MacK-
innon and Kramer in the early 1980’s. They computed the localization length ξM (W/t,E)
for systems of dimension Md−1 ×N , from the formula

ξ−1
M

(W
t
,E
)

= − lim
N→∞

1
2N

〈
ln
Md−1∑
i,j=1

∣∣G1i,Nj(E)
∣∣2〉 , (2.205)

where G(E) = (E + iε − H)−1 is the Green’s function, and i, j label transverse sites.
The average 〈· · · 〉 is over disorder configurations. It is computationally very convenient
to compute the localization length in this manner, rather than from exact diagonalization,
because the Green’s function can be computed recursively. For details, see A. MacKinnon
and B. Kramer, Phys. Rev. Lett. 47, 1546 (1981). Note also that it is 〈|G|2〉 which is
computed, rather than 〈G〉. The reason for this is that the Green’s function itself carries
a complex phase which when averaged over disorder configurations results in a decay of
〈GR,R′〉 on the scale of the elastic mean free path `.
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Figure 2.10: Mock-up of typical raw data from numerical study of localization length for
d = 2 (left panel) and d = 3 (right panel) systems. For d = 2, ξ∞(W/t) is finite and
monotonically decreasing with increasing W/t. For d = 3, there is a critical value of
W/t. For W/t < (W/t)c, ξM (W/t) diverges as M → ∞; this is the extended phase. For
W/t > (W/t)c, ξM (W/t) remains finite as M →∞; this is the localized phase.

MacKinnon and Kramer computed the localization length by employing the Ansatz of finite
size scaling. They assumed that

ξM

(W
t
,E
)

= Mf

(
ξ∞

(W
t
,E
)/

M

)
, (2.206)

where f(x) is a universal scaling function which depends only on the dimension d. MK
examined the band center, at E = 0; for d > 2 this is the last region to localize as W/t is
increased from zero. A mock-up of typical raw data is shown in fig. 2.10.

In the d = 2 case, all states are localized. Accordingly, ξM/M → 0 as M →∞, and ξM (W/t)
decreases with increasing W/t. In the d = 3 case, states at the band center are extended
for weak disorder. As W/t increases, ξM (W/t) decreases, but with ξ∞(W/t) still divergent.
At the critical point, (W/t)c, this behavior changes. The band center states localize, and
ξ∞(W/t) is finite for W/t > (W/t)c. If one rescales and plots ξM/M versus ξ∞/M , the
scaling function f(x) is revealed. This is shown in fig. 2.11, which is from the paper by
MacKinnon and Kramer. Note that there is only one branch to the scaling function for
d = 2, but two branches for d = 3. MacKinnon and Kramer found (W/t)c ' 16.5 for a
disordered tight binding model on a simple cubic lattice.



2.6. ANDERSON LOCALIZATION 35

Figure 2.11: Scaling function λM/M versus λ∞/M for the localization length λM of a
system of thickness M for (a) d = 2, and (b) d = 3. Insets show the scaling parameter λ∞
as a function of the disorder W . From A. MacKinnon and B. Kramer, Phys. Rev. Lett.
47, 1546 (1981).

2.6.3 Scaling Theory of Localization

In the metallic limit, the dimensionless conductance of a Ld hypercube is given by the
Ohmic result

g(L) =
hσ

e2
Ld−2 , (2.207)

whereas in the localized limit we have, from Pichard’s formula,

g(L) = 4 e−2L/ξ . (2.208)

It is instructive to consider the function,

β(g) ≡ d ln g
d lnL

, (2.209)

which describes the change of g when we vary the size of the system. We now know the
limiting values of β(g) for small and large g:

metallic (g � 1) =⇒ β(g) = d− 2 (2.210)

localized (g � 1) =⇒ β(g) = −2L
ξ

= ln g + const. (2.211)



36 CHAPTER 2. MESOSCOPIA

Figure 2.12: Sketch of the β-function for the localization problem for d = 1, 2, 3. A critical
point exists at g = gc for the d = 3 case.

If we assume that β(g) is a smooth monotonic function of g, we arrive at the picture in fig.
2.12. Note that in d = 1, we can compute β(g) exactly, using the Landauer formula,

g =
T

1− T
, (2.212)

where T ∝ exp(−L/ξ). From this, we obtain

βd=1(g) = −(1 + g) ln(1 + g−1) . (2.213)

It should be stressed that the very existence of a β-function is hardly clear. If it does exist,
it says that the conductance of a system of size L is uniquely determined by its conductance
at some other length scale, typically chosen to be microscopic, e.g. L0 = `. Integrating the
β-function, we obtain an integral equation to be solved implicitly for g(L):

ln
(
L

L0

)
=

ln g(L)∫
ln g(L0)

d ln g
β(g)

. (2.214)

A priori it seems more likely, though, that as L is increased the changes to the conductance
may depend on more than g alone. E.g. the differential change dg might depend on the
entire distribution function P (W ) for the disorder.
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Integrating the β-function: d = 3

We know β(g → 0) ' ln g and β(g →∞) = 1, hence by the intermediate value theorem there
is at least one point were β(g) vanishes. Whenever g satisfies β(g) = 0, the conductance g
is scale invariant – it does not change with increasing (or decreasing) system size L. We
will assume the situation is reflected by the sketch of fig. 2.12, and that there is one such
point, gc.

We now apply (2.214). Not knowing the precise form of β(g), we approximate it piecewise:

β(g) '


1 if g ≥ g+

α ln(g/gc) if g− < g < g+

ln g if g < g− ,

(2.215)

where α = gc β′(gc). We determine g+ and g− by continuity:

ln g+ = ln gc +
1
α

(2.216)

ln g− =
α

α− 1
ln gc . (2.217)

Now suppose we start with g0 = gc + δg, where |δg| � 1. We integrate out to g = g+ and
then from g+ to g � 1:

ln
(
L+

L0

)
=

ln g+∫
ln g0

d ln g

α ln(g/gc)
=

1
α

ln

(
ln(g+/gc)

ln(g0/gc)

)
(2.218)

ln
(
L

L+

)
=

ln g∫
ln g+

d ln g = ln(g/g+) , (2.219)

which together imply

g(L) = A+ gc ·
L

L0
· (g0 − gc)

1/α , (2.220)

where A+ = (eα/gc)1/α. The conductivity is

σ =
e2

h
· g
L

=
e2

h
·
A+ gc

L0
· (g0 − gc)

1/α . (2.221)

If instead we start with g0 = gc− δg and integrate out to large negative values of ln g, then

ln
(
L−
L0

)
=

ln g−∫
ln g0

d ln g

α ln(g/gc)
=

1
α

ln

(
ln(gc/g−)

ln(gc/g0)

)
(2.222)

ln
(
L

L−

)
=

ln g∫
ln g−

d ln g
ln g

= ln
(

ln g
ln g−

)
, (2.223)
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which says

g(L) = e−2L/ξ (2.224)

ξ =
2L0

A−
· (gc − g0)−1/α , (2.225)

with
A− =

ln(1/g−)

gc ·
[

ln(gc/g−)
]1/α . (2.226)

On the metallic side of the transition, when g0 > gc, we can identify a localization length
through

g ≡ gc/ξ , (2.227)

which says

ξ =
L0

A+
(g0 − gc)

−1/α . (2.228)

Finally, since g0 is determined by the value of the Fermi energy εF. we can define the critical
energy, or mobility edge εc, through

g(L0, εc) = gc , (2.229)

in which case

δg ≡ g(L0, εF)− gc =
∂g(L0, ε)

∂ε

∣∣∣∣
ε=εc

·
(
εF − εc

)
. (2.230)

Thus, δg ∝ δε ≡ (εF − εc).

Integrating the β-function: d = 2

In two dimensions, there is no fixed point. In the Ohmic limit g � 1, we have

β(g) = − c
g

+O(g−2) , (2.231)

where c is a constant. Thus,

ln
(
L

L0

)
=

ln g∫
ln g0

d ln g
β(g)

= −g − g0

c
+ . . . (2.232)

and
g(L) = kF`− c ln(L/`) , (2.233)

where we have used the Drude result g = kF`, valid for L0 = `. We now see that the
localization length ξ is the value of L for which the correction term is on the same order
as g0: ξ = ` exp(kF`/c). A first principles treatment yields c = 2

π . The metallic regime in
d = 2 is often called the weak localization regime.
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2 + ε dimensions

At or below d = 2 dimensions, there is no mobility edge and all eigenstates are localized.
d = 2 is the lower critical dimension for the localization transition. Consider now the
problem in d = 2 + ε dimensions. One has

β(g) = ε− c

g
+O(g−2) . (2.234)

The critical conductance lies at gc = c/ε. For ε→ 0+, this is large enough that higher order
terms in the expansion of the β-function can safely be ignored in the metallic limit. An
analysis similar to that for d = 3 now yields

g > gc =⇒ g(L) =
h

e2
σ Lε (2.235)

g < gc =⇒ g(L) = e−2L/ξ , (2.236)

with

σ =
e2

h
Lε0 · (g0 − gc) (2.237)

ξ =
2L0

A−
· (gc − g0) . (2.238)

Note that α = gc β′(gc) = +c/gc = ε. We thus obtain

ξ(ε) ∝ |ε− εc|−ν (2.239)

with ν = 1 + O(ε). Close to the transition on the metallic side, the conductivity vanishes
as

σ(ε) ∝ |ε− εc|s . (2.240)

The relation s = (d−2)ν, which follows from the above treatment, may be used to relate the
localization length and conductivity critical exponents. (In d = 3, MacKinnon and Kramer
obtained ν = s ' 1.2.)

2.6.4 Finite Temperature

In the metallic regime, one obtains from the scaling theory,

σd=3(L) =
e2

h
·

{
2k2

F`

3π
− 2
π2

(
1
`
− 1
L

)}
(2.241)

σd=2(L) =
e2

h
·

{
kF`−

2
π

ln
(
L

`

)}
(2.242)

σd=1(L) =
e2

h
·
{

4`− 2(L− `)
}
. (2.243)
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Clearly the d = 1 result must break down for even microscopic L>∼ 3`. The above results
are computed using the β-function

β(g) = (d− 2)−
cd
g

+O(g−2) , (2.244)

where the coefficients cd are computed from perturbation theory in the disorder.

At finite temperature, the cutoff becomes min(L,Lφ), where Lφ =
√
Dτφ is the inelastic

scattering length and D = vF` is the diffusion constant. Suppose that τφ(T ) ∝ T−p as

T → 0, so that Lφ = a (T/T0)−p/2, where T0 is some characteristic temperature (e.g. the
Debye temperature, if the inelastic mechanism is electron-phonon scattering). Then, for
Lφ > L,

σd=3(T ) = σB
d=3 −

2
π2

e2

h

{
1
`
− 1
a

(
T

T0

)p/2}
(2.245)

σd=2(T ) = σB
d=2 −

2
π

e2

h

{
ln
(a
`

)
− p

2
ln
(
T

T0

)}
(2.246)

σd=1(T ) = σB
d=1 − 2

e2

h

{
a

(
T0

T

)p/2
− `

}
, (2.247)

where σB
d is the Boltzmann conductivity. Note that σ(T ) decreases with decreasing tem-

perature, unlike the classic low T result for metals, where ρ(T ) = ρ0 + AT 2. I.e. usually
ρ(T ) increases as T increases due to a concomitant decrease in transport scattering time τ .
Weak localization physics, though, has the opposite effect, as the enhanced backscattering
is suppressed as T increases and Lφ decreases. The result is that ρ(T ) starts to decrease as
T is lowered from high temperatures, but turns around at low T and starts increasing again.
This behavior was first observed in 1979 by Dolan and Osheroff, who studied thin metallic
PdAu films, observing a logarithmic increase in ρd=2(T ) at the lowest temperatures.


