Physics 211B : Solution Set #1

[1] Drude formula — Consider a hypothetical monovalent s-band metal with a simple cubic
crystal structure. The valence band dispersion is given by the tight binding result,

e(k) = —2t{ cos(kza) + cos(kya) + cos(k.a)} .

Compute the DC conductivity tensor o g Show that o g =0 ) p 1s diagonal, and obtain
an expression for o. Numerically evaluate any integrals. The following result may prove
useful:

/du/dv5(cosu+cosv+2)\) =4K(v/1-22)O(1-)\?),

where K(x) is the complete elliptic integral of the second kind. Compare your result with
the Drude value you would obtain by approximating the band as parabolic, based on its
curvature at the zone center.

Solution: We must evaluate
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where the dispersion is
e(k) = —2t{ cos(kza) + cos(kya) + cos(k.a)} .

The velocity is

10e 2tay/ . .
v(k) = ok ?<sm(kz$a), sin(kya), sm(kzza)> .

As a consequence of the cubic symmetry, o g =0 ) ap 18 diagonal, and we may write

o= 2627(?>2/(;ik)3 sin®(k-a) <—g];> .

Q

The monovalency condition means that there is one electron per unit cell, which in turn
means the chemical potential lies at ¢+ = 0 so the s-band is half-filled. Changing variables
to u = kya, etc.,
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o= 2;3# /du/dv/dw sin?(w) d(cos u + cos v + cosw) .
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We now use

Z(N) = /du/dv5(cosu+cosv+2)\) (1)
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Thus,
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Numerical integration gives C ~ 2.59011.

where

Expanding the dispersion about the zone center, we find
e(k) = —6t + ta’k* + O(k*) (6)
hence the effective mass is given by

ta® = w = m’= h—2 .
- 2m* 2ta?
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where z = na® is the dimensionless density, equal to the average number of electrons per
unit cell (0 < z < 2). For a monovalent metal, the band is half filled, and z = 1, and the
prefactor 2z is 2. The exact value of the prefactor is 8C /7% ~ 0.668.

[2] Thermal transport in a magnetic field — Consider a metal with a parabolic band ¢(k) =
h2k?/2m* in the presence of a uniform magnetic field B. Use the Boltzmann equation*
to compute (a) the resistivity tensor p, (b) the thermal conductivity tensor x, (c) the
thermopower tensor @, and (d) the Peltier tensor M. Assume T is small, and work to
lowest nontrivial order in the temperature T. Also assume a constant relaxation time 7.
Does the Wiedemann-Franz law hold for the matrices x and p ?



Solution: We begin with the Boltzmann equation,
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We take ¢(k) = h?k?/2m*, and we write
of (k) = k- A(e)
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from which we obtain the linear relations
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The solution is easily obtained:
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The electrical and thermal currents are given by
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We now read off the transport coefficients from the relations
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We evaluate the integrals using the Sommerfeld expansion, and invoking the density of

states f 3/2
2 (m*
9(e) = 752713) Ve

With an energy-independent relaxation time 7, we obtain
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The quantity p~'@Q is proportional to the same matrix as is p~!, and one readily finds that

Q@ is a multiple of the unit matrix,
Q= 77T2/£]23T I
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Here we have used the results

Jaeateree - (<51) = b hmat0 + ()

m*ky 3n
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We also find ) )
T
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Finally, the thermal conductivity tensor is
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holds at the matrix level as well.

[3] Two bands — Calculate the frequency-dependent conductivity tensor for a direct gap
semiconductor in the presence of a magnetic field B = BZ. You should begin with the
Boltzmann equation in the relaxation time approximation (f° — f°, f — &f for holes),
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and the conduction and valence band dispersions,
e (k) = ey — shPmy " K kP
ec(k) =e§+ 3h°més kK



Assume the two bands behave independently, and solve the two Boltzmann equations for
the conduction electrons and valence holes. In each case, try a solution of the form

of (k,t) = kM AF(e(k)) e ™1
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The currents are

Compute o, 3 along principal axes of the effective mass tensors. You may assume that m"
and m® commute, i.e. they have the same eigenvectors. You should further assume that B
lies along a principal axis.

Solution: This problem is essentially solved in the notes in section 1.7. All that is left to
do is to sum the contributions from the valence and conduction bands:
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[4] Spin disorder resistivity (for the brave only!) — Consider an isolated trivalent Tb im-
purity ion in a crystal field. Application of Hund’s rules gives a total angular momentum
J = 6. A cubic crystal field splits this 13-fold degenerate multiplet into six levels: two
singlets, one doublet, and three triplets. The ground state is a singlet. Using the first Born
approximation, calculate the temperature-dependent resistivity in a free electron model
with a scattering Hamiltonian

Nimp
Himp =—A (g—1) Y_ d(r— R;) S - J; /B>,
j=1

where r and S are the conduction electron position and spin operators R; and J; are the
impurity position and angular momentum of the 7™ Tb impurity. A is the strength of the
exchange interaction, and g = % is the gyromagnetic factor.

(a) In general the relaxation time is energy-dependent: 7 = 7(g). Show that the resistivity
is given by p = m/ne?(r), where the average is with respect to the weighting function

eg(e) (—0f°/0e). Show also that
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which provides an upper bound for p which can often be computed.



(b) Use the results of (a) to derive the approximate expression for the resistivity p ~
Po Pij jS, where

BT (B B)/k,T
Pij = S e BelksT 1 _ o (BB kT
1 . S\ |2 1 . AN . .\ |2
Qij = 5|Ci| T[] + 3]Gl LD+ il 77 4]
where the ionic energy levels are denoted by E; and where the summations run over the
(2J + 1) crystal field states. Show that

3rm (g — 1) A%n,
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(c) Show that the high temperature limiting value of p is J(J + 1) p,. This is often called
the spin-disorder resistivity.

Solution: The collision term in Boltzmann equation is, from Fermi’s golden rule,
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where P; is the Boltzmann weight for the ion in state i:
_ exp(—E;/kyT)
b exp(—En/kpT)

Using plane wave states ¢y (1) = V12 exp(ik - r), the matrix element is obtained:
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We assume the impurity positions are uncorrelated, so that

2 _ 2
(ko [Py [0 )P = D (o' | 80 i)Y cie—#) (B-F)

hQV?
R R
Nimo A%2(g—1)2,, . ,
= N AU Go? |50 i) 2 (1 (Vi — 1))

The term proportional to dggs cancels when inserted into the collision integral. We are left
with
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Note that the Fermi-Dirac distribution f,ga is annihilated by Z:
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We therefore write
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The Boltzmann equation then takes the form
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It is convenient to define the structure factor
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Note that S(—u) = e~ #*S(u).

We assume a solution of the form
of°
Of = et(ex) - € ——

fx () - €
and plug this into our Boltzmann equation. Further assuming an isotropic Fermi surface,
the Jfis term integrates to zero since it is proportional to vy, aside from energy-dependent
(hence rotationally isotropic) factors. We then have
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(a) The conductivity is determined from
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which, for free electrons, gives
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Now the triangle inequality requires for any real functions f(¢) and g(¢)
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we conclude

hence

(b) Let us compute (7~ '). Noting that

(-5L)=sr a1,

we have
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The factor fO(¢)(1— fO(e — u) varies on a scale k,T. If kT < p and if u < p then we can
approximate
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and the energy integral becomes
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since n = k2/37% and e, = hk2/2m. Note that
Bu B(E; — E;) e PEi
Jon ey 50 = 5 S e s 19101

= pij Qji »
ij

and




where
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Therefore, the upper bound on the resistivity is p, = py pij Qji, with
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(c) At high temperatures, fu/(e?* — 1) — 1 and therefore pij — P;, independent of j. In
this limit, then,

S Q= e B[ Df  e
—Z<i|J2‘i>/ZeﬂEn

= J(J+1).

Hence, py = J(J + 1)p, at high temperatures.

[5] Cyclotron resonance in Si and Ge — Both Si and Ge are indirect gap semiconductors
with anisotropic conduction band minima and doubly degenerate valence band maxima. In
Si, the conduction band minima occur along the (100) ((I'X)) directions, and are six-fold
degenerate. The equal energy surfaces are cigar-shaped, and the effective mass along the
(I'X) principal axes (the ‘longitudinal’ effective mass) is m{ ~ 1.0me, while the effective
mass in the plane perpendicular to this axis (the ‘transverse’ effective mass) is m; ~ 0.20 me.
The valence band maximum occurs at the unique I' point, and there are two isotropic hole
branches: a ‘heavy’ hole with my, ~ 0.49m., and a ‘light’ hole with my; ~ 0.16 me.

In Ge, the conduction band minima occur at the fourfold degenerate L point (along the
eight (111) directions) with effective masses mj ~ 1.6 me and m; ~ 0.08 me. The valence
band maximum again occurs at the I' point, where the hole masses are my, ~ 0.34m. and

my, ~ 0.044me. Use the following figures to interpret the cyclotron resonance data shown
below. Verify whether the data corroborate the quoted values of the effective masses in Si
and Ge.

Solution: We found that Oug = ne? Fgﬁl, with

Tap = (17} —iw)myy £ © €5 B
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+eBy/c FeB,/c (77! —iw)m
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Figure 1: Constant energy surfaces near the conduction band minima in silicon. There are
six symmetry-related ellipsoidal pockets whose long axes run along the (100) directions.

The valence band maxima are isotropic in both cases, with
mpy, (Si) ~ 0.49 me mp, (Ge) ~ 0.34 me
mi, (Si) ~ 0.16 me mi, (Ge) ~ 0.044 m, .

With isotropic bands, the absorption is peaked at w = w. = eB/m*c, assuming w.r > 1.
Writing w = 27 f, the resonance occurs at a field

he m* 1 hf

e me 2mai (¢2/ay)

=358 x1077G- = . f[Hy]
—8590G -
me
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Figure 2: Cyclotron resonance data in Si (G. Dresselhaus et al., Phys, Rev, 98, 368 (1955).)
The field lies in a (110) plane and makes an angle of 30° with the [001] axis.

where we have used

he

= 4137 x 1077 G - cm?
h2
ag = 5 =0.529A
Me €

h =4.136 x 107 %eV - s

e2

— =27.2eV =2Ry

ag

f=240x 10" Hz .

Thus, we predict

By (Si) ~ 4210G Bun(Ge) ~ 2920 G
B (Si) ~ 1370 G B (Ge) ~ 378G .

All of these look pretty good.
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Figure 3: Constant energy surfaces near the conduction band minima in germanium. There
are eight symmetry-related half-ellipsoids whose long axes run along the (111) directions,
and are centered on the midpoints of the hexagonal zone faces. With a suitable choice
of primitive cell in k-space, these can be represented as four ellipsoids, the half-ellipsoids
on opposite faces being joined together by translations through suitable reciprocal lattice
vectors.

Now let us review the situation with electrons near the conduction band minimas:

Si: 6-fold degenerate minima along (100)
Ge: 4-fold degenerate minima along (111) (at L point)

my (Si) ~ 1.0 me my (Ge) >~ 1.6 me
my (Si) ~ 0.20 me mi (Ge) ~ 0.08 me .

The resonance condition is that o 5 = 00, which for 7 > 0 occurs only at complex frequen-
cies, i.e. for real frequencies there are no true divergences, only resonances. The location of
the resonance is determined by det I' = 0. Taking the determinant, one finds

1 o —1 N2 %2 6_2 2 m_:ﬁ 2 2
detI’ = (7 iw)my - < (1 iw) m; +c2Bz+m* 2 (B:+B;) ¢ -
1
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Figure 4: Cyclotron resonance data in Ge (G. Dresselhaus et al., Phys, Rev, 98, 368 (1955).)
The field lies in a (110) plane and makes an angle of 60° with the [001] axis.

Assuming wt > 1, the location of the resonance is given by

2 « 2
()5 (2
mgc my \ mic
where B = B, and B, = B, + By y. Let the polar angle of B be 6, so B = B cosf and
B, = Bsinf. We then have

2 *
w2 = <$> {c0329 + ﬂi sin® 9}

mic m

1
B(f) =8600G - (%)/\/cos%?-i-% sin?6 ,
e 1

where again we take f = w/21 = 2.4 x 10'° Hz.
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According to the diagrams, the field lies in the (110) plane, which means we can write

B = \/gsinxél — \/gsin)(éz—kcosxé3 )

where x is the angle B makes with &, = [001].

Ge

We have . i
T~ 0.082 ™ 0.051
Me m;

and we are told x = 60°, so

A /3, 3, .14
B_\/;e1_\/;ez+§e3-

The conduction band minima lie along (111), which denotes a set of directions in real space:

H[111] : A=+T2(é +é,+€&) = cos’0=(B-n) =4 = B=1950G
+H[UT]: A=+T2(é+é,— &) = cos’0=(B-n) =4 = B=1950G
L[111] : =2l (-¢ +é,+8&) = co?0=(B n)?="2F = B=1510G
111 s =21 (6, —éy+é) = cos?0=(B n)?="20 = B=710G.
All OK!
Si

Again, B lies in the (110) plane, this time with X = 30°, so

; 14 14 34
B:\/;el—\/;ez—k\/;%.

The conduction band minima lie along (100), so

+[001] : f = +é, = cos’0 = (B -n)* =32 = B=1820G
+[010] : n = +é, = cos?0 = (B -n)’ =1 = B =2980C
+[100] : N = +é, = cos?0 = (B-n)? =1 = B =2980G .

These also look pretty good.
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