
Physics 211B : Problem Set #0

These problems provide a cross section of the sort of exercises I would have assigned had I
taught 211A. Please take a look at all the problems, and turn in problems 1, 4, 6, 8, 9, 11,
13, 15, 17, and 18.

[1] Determine the bulk modulus κ = −V ∂p
∂V of NaCl, using the facts that the Madelung

constant for the NaCl lattice is A = 1.748 and the lattice constant is a = 5.64 Å. Start by
writing the total energy as

E(d) = N

{
−A e2

d
+ C d−p

}
,

where d is the nearest neighbor Na-Cl separation and C and p are constants. The first term
is the Coulomb energy, and the second term describes a phenomenological short-ranged
repulsion. The quantity p may be taken to be p = 12 for a Lennard-Jones potential.
Minimizing E with respect to d will then determine C in terms of other constants and d0,
the equilibrium Na-Cl separation at T = 0.

[2] In analogy to the sp3 hybridization of carbon in the diamond structure, discuss the
possibility of planar sp2 carbon hybridization. Provide expressions for the wavefunctions for
an orthonormal set of threel sp2-hybridized orbitals, and sketch qualitatively their density
distributions in the plane.

[3] The benzene molecule C6H6 consists of a ring of carbon atoms each bound to a hydrogen
atom. Benzene is a planar molecule, and the 2s orbitals hybridize with the 2p orbitals as
described in problem [2]. Each of the sp2 orbitals forms what is called a σ-bond with the
two neighboring C and one neighboring H atoms. The remaining pz electrons participate
in the so-called π-bonds. One electron per carbon atom participates in the π-bonding.

(a) If we neglect interactions, then a simple model for the π-orbitals is given by the tight-
binding Hamiltonian

H0 = −t
∑
σ=↑,↓

N∑
j=1

{
| j, σ 〉 〈 j+1, σ |+ | j+1, σ 〉 〈 j, σ |

}
,

where | j, σ 〉 = | j +N, σ 〉 and N = 6 for benzene. The quantity t > 0 is called the hopping
integral . Find the ground state wavefunction and the ground state energy. Show how the
physics of the ground state depends on the parity of N modulo 4. Is the ground state ever
degenerate? Start by showing that the eigenstates of H0 are all of the form

| k, σ 〉 =
1√
N

N∑
j=1

eikj | j, σ 〉 ,

where eikN = 1. Then find the eigenvalues ε(k).
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(b) For N = 4m + 2 the ground state of H0 is a nondegenerate spin singlet. What is the
dimension of the subspace of spin singlet wavefunctions? How many spin singlet states are
there for benzene (N = 6)?

(c) For N = 4m+ 2 one can also construct the so-called Kekulé states by writing

|ψA 〉 =
(
| ↑1 ↓2 〉 − | ↓1 ↑2 〉√

2

)
⊗
(
| ↑3 ↓4 〉 − | ↓3 ↑4 〉√

2

)
⊗ · · · ⊗

( | ↑N−1 ↓N 〉 − | ↓N−1 ↑N 〉√
2

)
.

Such a structure consists of alternating single and double bonds (recall that the σ-orbitals
already contribute one single bond between each neighboring pair of sites). Compare and
contrast this state with the ground state of H0 found in part (a). Note that there is a state∣∣ψB

〉
where the bond pattern is shifted by one link. Both these states are favored by a

strong local on-site repulsion term,

H1 = U
∑
j

nj↑ nj↓

when U is large. The Hamiltonian H = H0 +H1 is known as the Hubbard model .

[4] A C60 molecule consists of 60 carbon atoms arranged in the shape of a soccer ball. Each
site is threefold coordinated (i.e. it has three neighbors), and there are a total of 32 faces,
with 12 pentagons and 20 hexagons. It may be useful to have an actual soccer ball available
for this problem!

(a) Note that unlike benzene, where all the bonds are equivalent by sixfold rotational
symmetry, in C60 there are two inequivalent sets of bonds: those shared by pentagons and
hexagons, and those shared between hexagons. What does this suggest?

(b) Fun with math: Let F denote the number of faces, V the number of vertices, and E the
number of edges of an arbitrary planar graph. Prove that F − E + V = 1. This is known
as Euler’s theorem.

(c) On the sphere, one has F − E + V = 2, since the area ‘outside’ the graph on a plane
counts as another face when the plane is compactified to a sphere by identifying all the
points at infinity. The fullerenes are a family of spheroidal carbon molecules where every
carbon atom is threefold coordinated. Assuming only pentagonal and hexagonal faces,
prove that every fullerene molecule contains precisely 12 pentagons. What is the smallest
fullerene possible?

[5] The honeycomb structure is a triangular lattice with a two-element basis. Write down a
set of two primitive triangular lattice vectors and a set of basis vectors for the honeycomb
lattice. Assume the nearest neighbor separation is a.

[6] For each of the following structures, indicate whether or not it is a Bravais lattice. If
it is, find a set of three smallest primitive direct lattice vectors. If it is not, identify the
underlying Bravais lattice, and find the primitive smallest direct lattice vectors as well as
the smallest possible basis.
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(i) Base-centered cubic (simple cubic with additional points in the centers of each horizontal
face).

(ii) Side-centered cubic (simple cubic with additional points in the centers of each of the
vertical faces but not the horizontal faces).

(iii) Edge-centered cubic (simple cubic with additional points at the midpoints of all nearest-
neighbor links).

[7] Prove that the volume of the primitive cell of a Bravais lattice in d dimensions is

Ω =
∣∣εj1j2···jd aj11 a

j2
2 · · · a

jd
d

∣∣ ,
where {aj} with j = 1, . . . , d are primitive reciprocal lattice vectors.

[8] Prove that any reciprocal lattice vector G is an integral multiple of the shortest reciprocal
lattice vector parallel to G.

[9] Prove that it is impossible for any Bravais lattice to have an axis of five-fold symmetry.

[10] Show that, under the most general conditions, the elastic tensor cαµβν for a three-
dimensional solid has 21 independent components.

[11] At low temperatures elemental argon crystallizes into an FCC structure. The binding is
due to van der Waals forces and the interatomic potential may be modeled by the Lennard-
Jones formula,

V (r) = 4ε

{(
σ

r

)12

−
(
σ

r

)6
}
,

with ε = 10.5 meV and σ = 3.4 Å. Neglecting all but nearest neighbor forces, calculate the
phonon dispersion in the (110) direction and sketch your results. Compute the acoustic
phonon velocities in meters per second.

[12] A one-dimensional lattice consists of alternating masses M and m. The equilibrium
distance between nearest neighbors is 1

2a, i.e. the unit cell length is a. The potential energy
is given by

Φ = 1
2K

∞∑
j=−∞

{(
uj,1 − uj,2

)2
+
(
uj,2 − uj+1,1

)2
}
,

where uj,s is the displacement of the sth basis atom (s = 1, 2) in the jth unit cell. Calculate
the phonon spectrum and sketch your result. What is the acoustic phonon velocity? Show
that for m = M the spectrum coincides with that for a chain of equal masses.

[13] A linear chain of identical atoms is described by the potential energy function

Φ = 1
2

∞∑
j=−∞

∞∑
j′=−∞

K(j − j′)
(
uj − uj′

)2
,
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where K(m) = K(−m) depends only on the relative distance. Find the phonon dispersion
and examine its long wavelength limit. Show that if K(m) ∝ |m|−p for large separations m
then the long-wavelength dispersion in the vicinity of the zone center k = 0 is linear in the
crystal momentum k if p > 3 but for 1 < p < 3 one has ω(k) ∝ k(p−1)/2.

[14] Consider a crystal of elemental silver (Ag).

(a) Obtain an expression in terms of the phonon spectrum and the temperature, for the
mean square displacement

〈
u2(R)

〉
of an Ag atom from its equilibrium position.

(b) Look up the mass, elastic constants, and melting temperature TM of Ag and estimate〈
u2(R)

〉
at T = 0 and T = TM.

[15] Consider a one-dimensional square well potential

v(x) = −V0 Θ
(

1
2b− |x|

)
.

An electron propagates in the crystalline lattice potential

V (x) =
∞∑

j=−∞
v(x− ja) ,

where a > b. Obtain the equation which determines the band structure En(k), solve
numerically, and plot your results.

[16] Use the tight-binding method to evaluate the band structure for the two-dimensional
periodic potential

V (x, y) = V0 cos(2πx/a) + V0 cos(2πy/a) .

Work only with the lowest band, and include only nearest-neighbor hopping terms. Assume
that the individual atomic orbitals are harmonic oscillator ground state wavefunctions whose
width is determined by the curvature of V (r) at its minima.

[17] Find the dependence of the density of states g(E) on the energy E in the vicinity of
E = Ec for the following cases:

(a) Parabolic minimum:

E(k) = Ec +
~2k2

x

2mx

+
~2k2

y

2my

+
~2k2

z

2mz

(b) Saddle point:

E(k) = Ec +
~2k2

x

2mx

+
~2k2

y

2my

− ~2k2
z

2mz

[18] Two thought experiments on band structures and Fermi surfaces:
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(a) Consider a crystalline solid with an odd number of electrons per unit cell. Argue on the
basis of band structure considerations that it should be a metal, i.e. that it should have
a finite density of states at the Fermi energy. (In fact this conclusion is only valid if the
electrons are noninteracting. Interacting electrons can localize and form what is known as
a Mott insulator .)

(b) Consider a crystalline solid with an even number of electrons per unit cell. In the
absence of interactions, should such a material be a metal or an insulator? Show that both
situations are possible, depending on the position of the Fermi level and the band structure.
Provide some sketches to illustrate your conclusions.
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