Uncertainty, Measurement, and Models

Lecture 2 Physics 2CL Summer Session 2010

Outline

- Brief overview of lab write-ups
- What uncertainty (error) analysis can for you
- Issues with measurement and observation
- What does a model do?
- Brief overview of circuit analysis

Preparing for Lab

- Write-up due at the end of the last meeting
- Prepare by doing Taylor homework and prelab questions

Lab Write-ups

- Begin with lab number & title, date and you and your partners name
- Start with Taylor homework and prelab questions
- State briefly the objective
- Record all data with units and uncertainties
- Brief description of procedure
- Make clear labeled diagrams of setups
- Use graphs to present data, label axes, plot error bars Origin

Lab Write-up continued

- Include and justify functional fit of data
- Show calculations of final derived quantities, include uncertainty analysis
- State results and comment on the agreement with expectations (or not)
 - Be quantitative (within uncertainty, t-value)

What is uncertainty (error)?

- Uncertainty (or error) in a measurement is not the same as a mistake
- Uncertainty results from:
 - Limits of instruments
 - finite spacing of markings on ruler
 - Design of measurement
 - using stopwatch instead of photogate
 - Less-well defined quantities
 - composition of materials

Understanding uncertainty is important

- for comparing values
- for distinguishing between models
- for designing to specifications/planning

Measurements are less useful (often useless) without a statement of their uncertainty

An example

Batteries

rated for 9 V potential difference across terminals in reality...

Utility of uncertainty analysis

- Evaluating uncertainty in a measurement and calculated quantities
- Propagating errors ability to extend results to other measurements
- Analyzing a distribution of values
- Quantifying relationships between measured values

Evaluating error in measurements

- To measure height of building, drop rock and measure time to fall: $d = \frac{1}{2}gt^2$
- Measure times

2.6s, 2.4s, 2.5s, 2.4s, 2.3s, 2.9s

- What is the "best" value
- How certain are we of it?

Calculate "best" value of the time

• Calculate average value (2.6s, 2.4s, 2.5s, 2.4s, 2.3s, 2.9s)

$$- \quad t = \sum_{i=1}^{n} t_i/n$$

• Is this reasonable?

Uncertainty in time

- Measured values (2.6s, 2.4s, 2.5s, 2.4s, 2.3s, 2.9s)
- By inspection can say uncertainty < 0.3 s
- Calculate standard deviation
 - $\sigma = \sqrt{\sum (t_i \overline{t})^2 / (n-1)}$
 - $\sigma = 0.1949976 \ s$
 - $\sigma = 0.2 \text{ s}$ (But what does this mean???)

How to quote best value

- - $-\overline{t} = 2.52 \text{ s}$
- What is uncertainty
 - Introduce standard deviation of the mean

 $\sigma_{\overline{t}} = \sigma / \sqrt{n} = 0.08 \ s$

• Best value is

 $-t = 2.52 \pm 0.08 s$

Propagation of error

- Same experiment, continued...
- From best estimate of time, get best estimate of distance: 30.6 meters
- Know uncertainty in time, what about uncertainty in distance?
- From error analysis tells us how errors propagate through mathematical function

 $\epsilon(d) = 2 * \epsilon(t)$ 8% uncertainty or ± 2.4 m

Drawing Conclusions: The t - value

- Does value agree or not with accepted value of 30.7m?
- How different is it from the accepted? Introduce "t-value" (*t*)

 $t = |d_{\text{meas}} - d_{\text{accept}}| / \sigma = 0.1/2.4 = .04$

- If value difference ≤ 1 then they agree
- Later we will learn what this means in a more quantitative way

Expected uncertainty in a calculated sum a = b + c

- Each value has an uncertainty

- $b = b \pm \delta b$
- $c = \overline{c} \pm \delta c$
- Uncertainty for a (δa) is **at most** the sum of the uncertainties

 $\Box \ \delta a = \delta b + \delta c$

- Better value for δa is $\Box \delta a = (\delta b^2 + \delta c^2)$
- Best value is
 - $a = \overline{a} \pm \delta a$

Expected uncertainty in a calculated product a = b*c

- Each value has an uncertainty

- $b = b \pm \delta b$
- $c = c \pm \delta c$
- Relative uncertainty for a (ɛa) is at most the sum of the RELATIVE uncertainties

 $\Box \epsilon a = \delta a/a = \epsilon b + \epsilon c$

- Better value for δa is $\Box \epsilon a = (\epsilon b^2 + \epsilon c^2)$
- Best value is
 - $a = \overline{a} \pm \varepsilon a$ (fractional uncertainty)

What about powers in a product $a = b*c^2$

- Each value has an uncertainty

- $b = b \pm \delta b$
- $c = c \pm \delta c$
- $\varepsilon a = \delta a/a$ (relative uncertainty)
- powers become a prefactor (weighting) in the error propagation

•
$$\varepsilon a = (\varepsilon b^2 + (2^* \varepsilon c)^2)$$

How does uncertainty in t effect the calculated parameter d?

$$- d = \frac{1}{2} g t^2$$

$$\epsilon d = (2 \epsilon t)^2 = 2 \epsilon t$$

ed = 2*(.09/2.52) = 0.071

 $\delta d = .071*31 \text{ m} = 2.2 \text{ m} = 2 \text{ m}$

Statistical error

Relationships

- Know there is a functional relation between d and t $d = \frac{1}{2} g t^2$
- d is directly proportional to t²
- Related through a constant $\frac{1}{2}$ g
- Can measure time of drop (t) at different heights
 (d)
- plot d versus t to obtain constant

Quantifying relationships

$$\mathbf{d} = \frac{1}{2} \mathbf{g} \mathbf{t}^2$$

Different way to plot

 $d = \frac{1}{2} g(t^2)$

slope = $\frac{1}{2}$ g

Compare analysis of SAME data

- From a fit of the curve d versus t obtained $-g = 8.3 \pm 0.3 \text{ m/s}^2$
- From the fit of d versus t^2 obtained - g = 8.6 ± 0.4 m/s²
- Do the two values agree?
- Which is the better value?

Measurement and Observation

- Measurement: deciding the amount of a given property by observation
- Empirical
- Not logical deduction
- Not all measurements are created equal...

Reproducibility

- Same results under similar circumstances
 Reliable/precise
- 'Similar' a slippery thing
 - Measure resistance of metal
 - need same sample purity for repeatable measurement
 - need same people in room?
 - same potential difference?
 - Measure outcome of treatment on patients
 - Can't repeat on same patient
 - Patients not the same

Precision and Accuracy

- Precise reproducible
- Accurate close to true value
- Example temperature measurement
 - thermometer with
 - fine divisions
 - or with coarse divisions
 - and that reads
 - 0 C in ice water
 - or 5 C in ice water

Accuracy vs. Precision

Random and Systematic Errors

- Accuracy and precision are related to types of errors
 - random (thermometer with coarse scale)
 - can be reduced with repeated measurements, careful design
 - systematic (calibration error)
 - difficult to detect with error analysis
 - compare to independent measurement

Observations in Practice

- Does a measurement measure what you think it does? Validity
- Are scope of observations appropriate?
 - Incidental circumstances
 - Sample selection bias
- Depends on model

Models

- Model is a construction that represents a subject or imitates a system
- Used to predict other behaviors (extrapolation)
- Provides context for measurements and design of experiments
 - guide to features of significance during observation

Testing model

- Models must be consistent with data
- Decide between competing models
 - elaboration: extend model to region of disagreement
 - precision: prefer model that is more precise
 - simplicity: Ockham's razor

Oscilloscope – screen

Oscilloscope – voltage scale

Oscilloscope – time scale

Series and Parallel

Uncertainties - Series and Parallel

 $R_{TOTAL} = R_1 + R_2$ $\delta R_{TOTAL} = ??$ $\delta R_{TOTAL} = \sqrt{\delta R_1^2 + \delta R_2^2}$

 $1/R_{TOTAL} = 1/R_{1} + 1/R_{2}$ $R_{TOTAL} = R_{2} R_{1}/(R_{1} + R_{2})$ $\epsilon R_{TOTAL} = ??$ $\epsilon R_{TOTAL} = [\epsilon (R_{2} R_{1})^{2} + \epsilon (R_{2} + R_{1})^{2}]$

Circuit Analysis

Kirchoff's Rules

Circuit Exp. 1

Reminder

- perform lab #0
- Read and Prepare for lab # 1 on Tuesday/Wednesday
- Read Taylor through chapter 3
- Do assigned homework Taylor problems
 3.7, 3.36, 3.41