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Abstract

An electrical circuit consisting of a resistor R, capacitor C, and inductor I,
in series was driven by the square-wave generator. An oscilloscope was used to
explore oscillations and damping. The experimental values for the oscillation
frequency and the Q-factor are in agreement with theoretical estimates based
on the known values of R, L and C. The value of Q was determined both
by counting the oscillations before decay to 1/e of the original strength and
by fitting the measured peak amplitude to an exponential decay function.
Finally, the additional resistance need for "critical damping” was determined

experimentally and was found to be in accord with the theoretical prediction.



I. INTRODUCTION

Oscillations and damping are observed in diverse physical situations ranging from a
child on a swing to a plucked guitar string. In general, oscillations occur when an object is
displaced from its equilibrium position. A restoring force accelerates the object back towards
equilibrium, but inertia causes it to "overshoot” so that the object proceeds to the other
side of equilibrium. The process then repeats resulting in oscillations, unless there is some
frictional "drag” which causes the motion to decay away.

Oscillations occurring in a series RLC circuit are analogous, even though one cannot
directly "see” these oscillations. Oscillating currents transfer energy back and forth from
:apacitor to inductor, until dissipation in the resistor causes the excitation to decay away.

In this experiment we verified that the second-order differential equations derived in
the Physics 2CL lab manual[1] do indeed quantitatively describe the oscillations and decay
of current in an RLC circuit. The circuit was excited by a "step” voltage from a signal
generator and the resulting currents were measured by monitoring the potential difference
across the resistor using an oscilloscope.

The currents revealed oscillatory character with the decaying amplitude. The frequency
of the of the oscillations as well as the decay rate were readily obtained. As expected, the
oscillations were well-characterized by a natural oscillation frequency f and a quality factor
(). Further, it was shown that any desired damping rate can be readily obtained by varying
the value of the resistance R. One goal of the experiment was to design a circuit with
"critical damping”. Under this critical regime the excitation is damped away faster than
the system completes one full cycle of the oscillations. A second goal was to determine the

inductance of the "unknown inductor”.

II. THEORY
Consider the series RLC circuit shown in Fig. 1. The voltage drop across the resistor

Vi = iR, capacitor Vo = -CL [idt and inductor Vj = Lﬂ-‘f follows the Kirchhoff’s law(2]:



s=Ve+Vo+Vy (1)

where Vg is the applied voltage from the generator. Differentiation of Eq. 1 leads to an

exponential form for the current:

fis= T:(J(’ : (2)
with [ given by the following equation:
= g 45 [(R13) — (1/10) ®)
T 2L 2 n =) » .

The real part of [I stands for damping of the current whereas the imaginary part describes
the oscillatory character of the current. Thus it is customary to write Eq. 3 in the following

form:
i = ige” " Msin(wt). (4)
In the Eq. 4 the frequency w can be expressed through R, L and C' as:

w? = (R%/L% — (4/LC) = w? — R*/4L2, (

[
~—

A plot of Eq. 3 is presented in Fig. 2. Notably, for the case of reasonably weak damping

w? o~ W

III. EXPERIMENTAL TECHNIQUES

Experiments on the RLC circuit were performed using a standard signal generator and
oscilloscope as shown in Fig. 1. The resistances of the resistor R and of the inductor Ry, were
measured. We estimated the internal resistance of the signal generator Ry to be close to
50- . We used labeled values of the resistance R = 501 £ 1- | capacitance ' = 0.100F + 10%,
and inductance L = lm#H & % with R, = 12.0 £ 0.1- . The signal generator produced
the square wave excitations of amplitude Vg = 5.0 £ 0.1V at a frequency of about 100 Hz.
Note that the frequency of these excitations is irrelevant since we are merely observing the

oscillations induced by the leading edge of the square wave pulses.



In our experiment we recorded the voltage across the resistor using the oscilloscope as
a non-perturbative measurement tool. The scope does not significantly alter the circuit be-
cause its input impedance is about 1 M- , which is much greater than the resistance of the
circuit. We found it convenient to trigger the oscilloscope synchronously with the square
wave drive by connecting the TTL output of the generator to the TRIG IN of the oscillo-

scope.

IV. RESULTS

Our first task was to determine the oscillation frequency. For this, we measured the
time between 5 oscillation peaks on the screen of the oscilloscope t5; = (1.2 + 0.1) ms
yielding the frequency of 12.54+1 kHz. This value compares well with the theoretical estimate
fin = (11.8 £0.2) determined from Eq. 5. The predicted and measured values differ by 0.7
kHz which is less than the combined theoretical and experimental uncertainty of (1= 1.5
kHz. We obtain a ratio of t=0.7 indicating that our measurements are within one standard
deviation of the predicted theoretical value. This good agreement suggests that the theory
is adequate. The error in the prediction is largely due to 10% uncertainty in the labeled
component values.

We determined @ by the simple method of counting oscillations before the signal decays
down to 1/e of its original strength. We obtained N=... leading to @ = ....[1]. We then
performed a more accurate measurement of ¢ based on the determination of the amplitudes
and times of the "peaks” in the current oscillations. The results are presented in Table 1
and are plotted in Fig. 3. We carried out the exponential fit y = Voe /2 of our results
using the "Origin” data analysis package. The fitted dependence is also depicted in Fig. 3.

From the fit we obtained the following values of Vy = ... and t; = ...

V. DISCUSSION
We find that the oscillations and damping of currents in a simple RLC circuit are well

described by the easily understood from Eq. 2-5. These equations are easily derived from the



basic conservation laws. Furthermore, oscillations can be readily displayed on the screen of
the oscilloscope. While the theory predicts that the dissipation of energy in the oscillating
circuit is related to heating of the resistor, no significant heating was detected. A quick
estimate of the dissipated energy suggested that the amount of energy lost is miniscule and
can be observed only with accurate temperature sensors. Finally, we note that all resistors
in a series circuit are responsible for the current decay. Therefore, it is important to take
into account of "hidden” resistors for the quantitative estimates.

The author would like to acknowledge valuable discussions with the teaching assistants.

Table 1. Oscillations peaks heights at different times.

time (ms)|Vpear (Volts)

L.1 5.7 0.1
2.3 3.2+0.1
3.5 LT %01
4.7 0.5 £ 0.1
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VII. FIGURE CAPTIONS

Figure 1. Electrical Circuit Studied.

Figure 2: Expected current oscillations and "envelope” function.

Figure 3. Amplitude of voltage peaks as a function of time. The dotted line shows

exponential fit to the data.
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