

 T_0 = reference temperature

 α = temperature coefficient of resistivity, units of (°C)⁻¹

For Ag, Cu, Au, Al, W, Fe, Pt, Pb: values of α are ~ 3-5×10^-3 (°C)^-1

Please note -- I edited some values here compared to the slide I presented in lecture!

Typical tungsten filament: ~1 m long, but 0.05mm in radius.

Calculate typical R.

A =
$$\pi (5x10^{-5}m)^2 = 7.9x10^{-9}m^2$$

$$ρ = 5.6x10^{-8} Ωm$$
 (Table 17.1)

R = ρ L/A = (5.6x10⁻⁸ Ωm) (1m)/ 7.9x10⁻⁹ m² = 7.1 Ω

Note: As per section 17.6, the resistivity value used above is valid only at a temperature of 20° C, so this derived value of R holds only for T= 20° C.

Calculate ρ at T=4000°C, assuming a linear ρ -T relation: For tungsten, $\alpha = 4.5 \times 10^{-3}$ /°C $\rho = \rho_0 [1+\alpha(T-T_0)] = 8.3 \times 10^{-7} \Omega m$ R = $\rho L/A = 106 \Omega$.

(note-- this is still less than the estimate of >200 Ω we'll derive in class in a few minutes... I suspect the ρ -T relation in reality may not be strictly linear over such a wide range of temperature; my guess would be that the above value of α may only be valid for temperatures of tens to hundreds of °C)

Superconductors

For some materials, as temperature drops, resistance suddenly plummets to 0 below some T_c .

Once a current is set up, it can persist without any applied voltage because $R \rightarrow 0!$

© 2006 Brooks/Cole - Thomson

Superconductors

Applications:

Energy storage at power plants
Superconducting magnets with much stronger magnetic fields than normal electromagnets
Super conducting distribution power lines could eliminate resistive losses

More recently: As the field has advanced, materials with higher values of T_c get discovered

TABLE 17.2

Critical Temperatures for
Various SuperconductorsMaterial $T_c(K)$ Zn0.88

Zn	0.88
Al	1.19
Sn	3.72
Hg	4.15
Pb	7.18
Nb	9.46
Nb_3Sn	18.05
Nb_3Ge	23.2
$YBa_2Cu_3O_7$	90
Bi-Sr-Ca-Cu-O	105
Tl-Ba-Ca-Cu-O	125
HgBa ₂ Ca ₂ Cu ₃ O ₈	134

© 2006 Brooks/Cole - Thomson

© 2006 Brooks/Cole - Thomson

Electrical Energy and Power

Power dissipated in a R is due to collisions of charge carriers with the lattice. Electrical potential energy is converted to thermal energy in the resistor---a light bulb filament thus <u>glows</u> or toaster filaments give off heat (and turn orange)

© 2006 Brooks/Cole - Thomson

Power dissipated in a resistor

Power = work / time = $q\Delta V/\Delta t$

 $P = I * \Delta V$

 $P = I^2 R$

 $P = \Delta V^2 / R$

UNITS: P = I V = Amp * Volt = C/s * J/C = J/s = WATT Example: A typical household incandescent lightbulb is connected to a 120V outlet. The power output is 60 Watts. What's the current through the bulb? What's R of the filament? Example: A typical household incandescent lightbulb is connected to a 120V outlet. The power output is 60 Watts. What's the current through the bulb? What's R of the filament?

 $\Delta V = 120 V$ (rel. to ground) P=I $\Delta V \rightarrow I = P/\Delta V = 60W/120V = 0.5 A$

P = Δ V² / R → ----> R = Δ V² / P = (120V)² / 60 W = 240 Ω

Note -- a few slides earlier, we'd estimated the typical resistance of a tungsten light bulb filament at 4000°C -- that estimate of ~106 Ω assumed for simplicity a constant coefficient of resistivity α from 20°C to 4000°C, which might not be the case in reality. If the actual value of α increases as T increases, then the dependence of ρ on T will also be non-linear

Electric Range

A heating element in an electric range is rated at 2000 W. Find the current required if the voltage is 240 V. Find the resistance of the heating element.

$$P = I\Delta V \rightarrow I = P/\Delta V = 2000W/240V = 8.3 A$$

$$R = \Delta V^2 / P = (240V)^2 / 2000W = 28.8 \Omega$$

Cost of electrical power

1 kilowatt-hour = 1000 W * 1 hour = 1000 J/s (3600s) = 3.6e6 J.

1kWh costs about \$0.13, typically

How much does it cost to keep a single 100W light bulb on for 24 hours? (100W)*24hrs = 2400 W-hr = 2.4kWh 2.4kWh*\$0.13 = \$0.31

So how much does it cost per week to keep the ~40 fluorescent lights in this classroom on for 40 hours per week? (assume P=20W, since fluor. bulbs are ~4x as efficient as producing visible light as incandescent light bulbs). 40x20W*40hr = 32000 W-hr = 32kWh 32kWh*\$0.13 = \$4.16 How many rooms are there on campus?

Power Transmission

Transmitting electrical power is done much more efficiently at higher voltages due to the desire to minimize (I²R) losses.

Consider power transmission to a small community which is 100 mi from the power plant and which consumes power at a rate of 10 MW.

In other words, the generating station needs to supply whatever power it takes such that $P_{req} = 10$ MW arrives at the end user (compensating for I²R losses): $P_{generated} = P_{loss} + P_{req}$

Consider three cases:

A: V=2000 V;I=5000 A $(P_{req} = IV = 10^7 W)$ B: V=20000 V;I=500 A $(P_{req} = IV = 10^7 W)$ C: V=200000 V;I=50 A $(P_{req} = IV = 10^7 W)$

Power Transmission

Resistance/length = 0.0001 Ω / foot. Length of transmission line = 100 mile = 528000 feet. Total R = 52.8 Ω .

A: $P_{loss} = I^2 R = (5000 A)^2 (52.8 \Omega) = 1.33 x 10^3 MW$ $P_{generated} = P_{loss} + P_{req} = 1.33 x 10^3 MW + 10 MW = 1.34 x 10^3 MW$ Efficiency of transmission = $P_{req} / P_{generated} = 0.75\%$

B: $P_{loss} = I^2 R = (500A)^2 (52.8Ω) = 13.3 MW$ $P_{generated} = P_{loss} + P_{req} = 13.3 MW + 10 MW = 23.3 MW$ **Efficiency of transmission** = $P_{req} / P_{generated} = 43\%$

C: $P_{loss} = I^2 R = (50A)^2 (52.8\Omega) = 0.133 \text{ MW}$ $P_{generated} = P_{loss} + P_{req} = 0.133 \text{ MW} + 10 \text{ MW} = 10.133 \text{ MW}$ **Efficiency of transmission** = $P_{req} / P_{generated} = 98.7\%$ (most reasonable)

Lower current during transmission yields a reduction in P_{loss}!

You can do the same exercise for local distribution lines (assume $P_{req} = 0.1$ MW), which are usually a few miles long (so the value of R is ~ a few) and need to distribute power from substations to local neighborhoods at a voltage of at least a few thousand volts (keeping currents under ~30A, roughly) to have a transmission efficiency above ~90%.

Ch 18: Direct-Current Circuits

EMF

Resistors in Series & in Parallel

Kirchoff's Junction & Loop Rules for complex circuits

RC Circuits

Household circuits & Electrical Safety

Sources of EMF

In a closed circuit, the source of EMF is what drives and sustains the current.

EMF = work done per charge: Joule / Coulomb = Volt

Sources of EMF

In a closed circuit, the source of EMF is what drives and sustains the current.

EMF = work done per charge: Joule / Coulomb = Volt

Assume internal resistance r of battery is negligible. Here, $\mathcal{E} = IR$

From A to B: Potential increases by $\Delta V = +\epsilon$

From B to A: Potential decreases by $\Delta V = -\epsilon$.

From C to D: Potential decreases by $\Delta V = -IR$ = $-\varepsilon$

From A to B: Potential increases by $\Delta V = +\epsilon$

From B to A: Potential decreases by $\Delta V = -\epsilon$.

From C to D: Potential decreases by $\Delta V = -IR$ = $-\varepsilon$

If circuit is grounded: V at points A & D will be zero.

The middle voltage can be 'tailored' to any voltage we desire (between 0 and ϵ) by adjusting R₁ and R₂!

Resistors connected in series

© 2006 Brooks/Cole - Thomson

What's R_{eq} in terms of R_1 and R_2 ? $\Delta V = IR_{eq}$

Resistors connected in series

Note: Current is the same in R_1 and R_2 . $\Delta V_1 = IR_1$ $\Delta V_2 = IR_2$ $\Delta V = \Delta V_1 + \Delta V_2$ $\Delta V = IR_1 + IR_2 = I(R_1 + R_2)$ $\Delta V = IR_{eq}$ $R_{eq} = R_1 + R_2$

For N resistors in series: $R_{eq} = R_1 + R_2 + ... + R_N$

Note that R_{eq} is larger than any one individual R value

Resistors connected in series

Find R_{eq} : $R_{eq} = 4\Omega + 7\Omega + 1\Omega + 2\Omega = 14\Omega$

Understanding the Series Law

Total R is prop. to $(L_1 + L_2)$