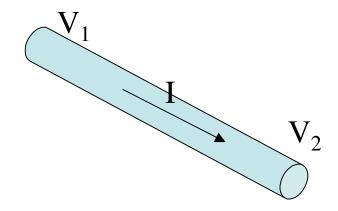

Ch. 17: Current & Resistance

Current: Rate at which charge flows through an area A (cross-section of a wire)



Flow is assumed to be perpendicular to area.

Units = Coul/sec = Amp.

Remember: I is defined as the direction in which positive charges will travel (in metal, the charge carriers are actually electrons)

Potential difference sets up Efield to drive Current

$$V_1 - V_2 = \Delta V$$

Example: Terminals of a battery

Example:

A flashlight bulb carries a current of 0.1 A. Find the charge that passes through the bulb in 0.5 seconds:

 $I = \Delta Q/\Delta T \rightarrow : \Delta Q = I \times \Delta T = 0.1C/s \times 0.5s = 0.05 C$

How many electrons does this correspond to? $\Delta Q = N \times e$ $N = \Delta Q/e = 0.05C / (1.6 \times 10^{-19} C/e^{-}) = 3.1 \times 10^{17} e^{-3} s$

Amp-hour

Unit of charge

charge = current × time

Ex.: Ni-metal hydride battery: How much charge (in C) is equal to 2100 mAh?

Charge = $(2100 \times 10^{-3} \text{ A}) (1 \text{ hour})$ = $(2100 \times 10^{-3} \text{ C/s})(3600 \text{ s})$

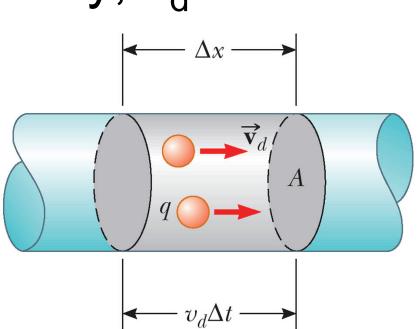
= 7560 C.

Amp-hour

If one of these batteries is used to power a device which draws 0.15 Amps, how long will the battery last?

 $I = \Delta Q / \Delta T$

 $\Delta T = \Delta Q / I = (2100 \times 10^{-3} \text{ Amp} \times \text{hr}) / 0.15 \text{ Amps} = 14 \text{ hours.}$

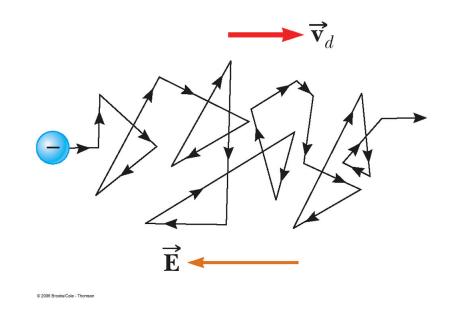


Drift Velocity, v_d

Volume = A Δx

n = density of charge carriers = # of charge carriers per unit vol.

N = Total # of charge carriers = n A Δx


Total charge in this volume: $\Delta Q = N \times charge/carrier = n A \Delta x q$

 $\Delta x = v_{d} \Delta t$ $\Delta Q = nA v_{d} \Delta t q$ $I = \Delta Q / \Delta t = n A v_{d} q$

Drift Velocity, v_d

Electrons undergo repeated collisions and move randomly. Typical velocity for Cu is 2×10⁶ m/s

In the presence of an external field, the <u>average</u> motion is a slow drift

Electric signal travels very fast -- almost at the speed of light: electrons interact and "push" other electrons in the conductor.

Example:

Find the drift velocity of electrons in a copper conductor whose diameter is 2 mm when the applied current is 0.5 A. The mass density of Cu is ρ = 8.95g/cm³. Each Cu atom contributes 1 electron. One mole of Cu has a mass of 63.5 gm.

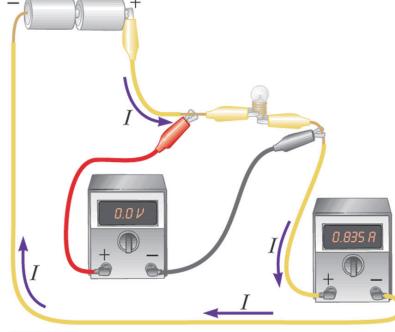
Soln: Need to calculate density of charge carriers (# of e⁻'s/m³)

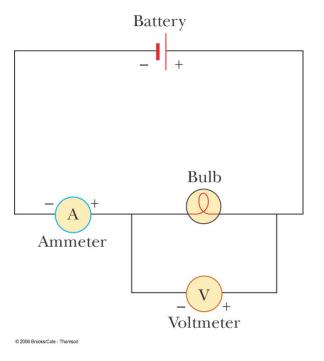
How many moles per cm³? $(8.95 \text{gm/cm}^3)/(63.5 \text{gm/mol}) = 0.14 \text{ mol/cm}^3$

Every mol contain 6x10²³ atoms.

Number of atoms per cm³: $(0.14 \text{ mol/cm}^3)(6x10^{23} \text{ atoms/mol}) = 8.4x10^{22} \text{ atoms/cm}^3$

Density of charge carriers (given that $1e^{-1}$ atom) = $8.4 \times 10^{22} e^{-1}$ cm³


 $v_d = I/(nqA) = 0.5A/(8.4x10^{28}e^{-}/m^3 1.6x10^{-19}C 3.14(.001m)^2)$ = 1.2x10⁻⁵ m/s = 0.012 mm/s


If A = 50 Amps: v_d would be 1.2 mm/s -- still a snail's pace!

Ammeter

Device used to measure current

All charge must pass through ammeter

© 2006 Brooks/Cole - Thomson

Batteries

•Recall that a discharging capacitor delivers a large quantity of charge at once

•Batteries: Offer constant potential difference ΔV , yielding a steady amount of charge through relatively slow chemical reactions.

Batteries

•Electrons flow from the negative terminal to the positive terminal.

•Reaction doesn't take place unless the terminals are connected to something (so batt. can sit on shelf for a while and still have lots of power)

•If you attach a wire between the terminals directly, with no load, you'll wear out the battery quickly.

Parts of a battery

Example: Zn/C battery: Negative terminal: Zn Positive terminal: C Electrolyte: sulfuric acid conducting wire

 $H_2SO_4 + Zn \rightarrow SO_4^- + H^+ + H^+ + Zn^{2+} + e^- + e^-$

$$Zn^{2+} + SO_4^- \rightarrow ZnSO_4$$

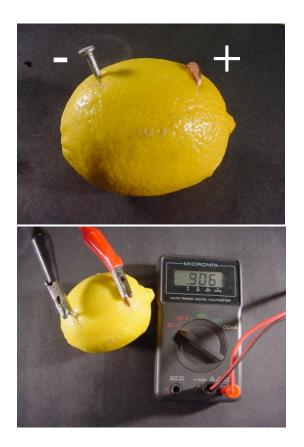
The e⁻'s from the zinc atoms flow through the wire and combine with H on the Carbon rod. (lower potential V: easier then combining with the H⁺ in the acid)

Different combinations of metals and electrolytes (medium) control the final voltage

- Zinc-carbon battery Also known as a standard carbon battery, zinc-carbon chemistry is used in all inexpensive AA, C and D dry-cell batteries. The electrodes are zinc and carbon, with an acidic paste between them that serves as the electrolyte.
- Alkaline battery Alkaline chemistry is used in common Duracell and Energizer batteries, the electrodes are zinc and manganese-oxide, with an alkaline electrolyte.
- Lithium-iodide battery Lithium-iodide chemistry is used in pacemakers and hearing aides because of their long life.
- Lead-acid battery Lead-acid chemistry is used in automobiles, the electrodes are made of lead and lead-oxide with a strong acidic electrolyte (rechargeable).
- Nickel-cadmium battery The electrodes are nickel-hydroxide and cadmium, with
 potassium-hydroxide as the electrolyte (rechargeable).
- Nickel-metal hydride battery This battery is rapidly replacing nickel-cadmium because it does not suffer from the <u>memory effect</u> that nickel-cadmiums do (rechargeable).
- <u>Lithium-ion battery</u> With a very good power-to-weight ratio, this is often found in high-end laptop computers and <u>cell phones</u> (rechargeable).
- · Zinc-air battery This battery is lightweight and rechargeable.
- · Zinc-mercury oxide battery This is often used in hearing-aids.
- Silver-zinc battery This is used in aeronautical applications because the power-to-weight ratio is good.

(http://electronics.howstuffworks.com/battery.htm)

Lemon Battery


http://hilaroad.com/camp/projects/lemon/lemon_battery.html http://www.ehow.com/how-does_5474935_lemon-battery-works.html

Lemons contain citric acid (electrolyte) Negative terminal: Galvanized nail (Zn coating) Positive terminal: Cu penny

 $Zn \rightarrow Zn^{2+}$ + 2 e⁻

The copper attracts the electrons

When the electrons reach the other end: $2H^+ + 2e^- \rightarrow H_2$

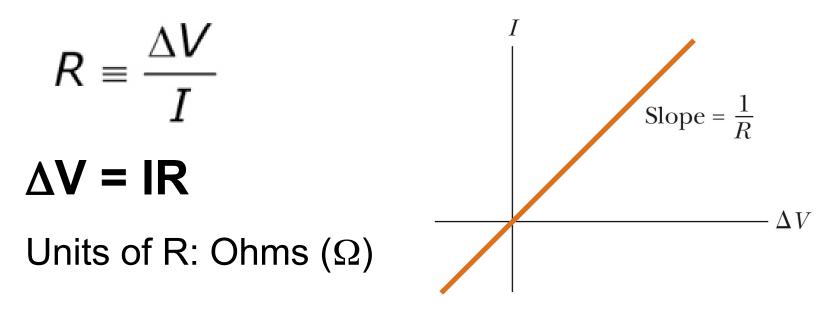
Walt uses everyday materials to build a homemade Galvanic Cell. Anode(neg.): Zn from coins, galvanized nuts, bolts, washers

Cathode (pos.): graphite + mercuric oxide from the brake pads

Electrolyte: sponge in potassium hydroxide: (supply K+ and OH- ions)

Conductor: Cu wire

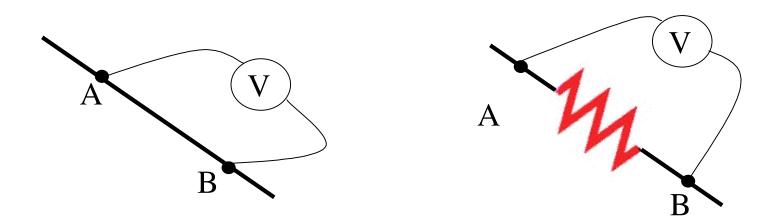
Connecting cells in series



 $\Delta V_{total} = \Delta V_1 + \Delta V_2 + \dots + \Delta V_6$ 9V = 1.5V + 1.5V + \dots + 1.5V

Resistance

Resistance of a conductor is defined as ratio of potential difference across it to the current that results: Ohm's Law: For many materials, R remains constant over a wide range of applied ΔV or I.

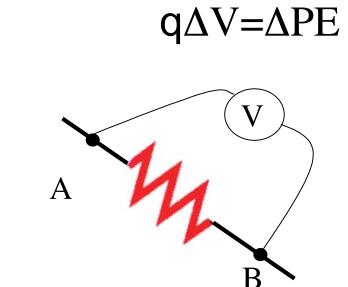


@ 2008 Brooke/Cole - Th

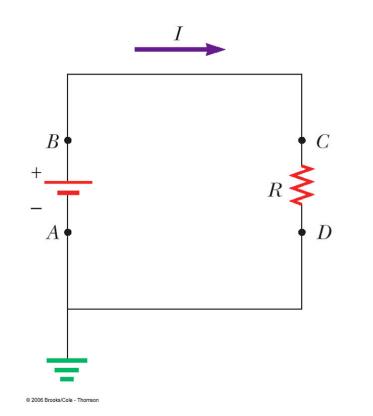
Resistors

In a circuit: the resistance of the conducting wires is negligible, so $\Delta V = 0$ (no extra loss in potential) between points A & B.

But a resistor can cause a significant drop in ΔV (comparing V before/after the resistor):

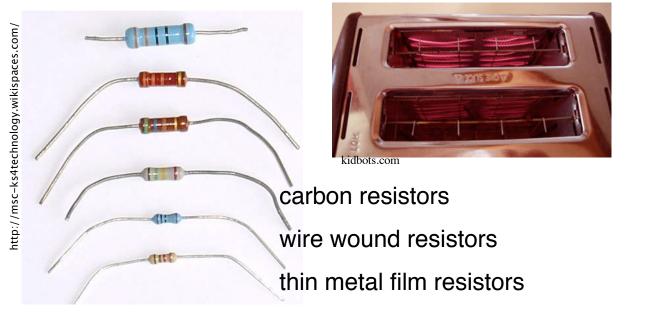


Resistors


Analogy: Waterfalls: sudden drop in gravitational potential energyΔPE converted to kinetic energy

of water

electrical potential energy converted to thermal energy in resistor

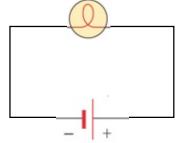

Change in PE is + $q\Delta V$ (battery) or - $q\Delta V$ (resistor)

Points A and D are "grounded" -- Potential V = 0. Points B and C are both at higher potential

Resistors

RESISTANCE regulates current and causes conversion of electrical potential energy to heat.

Common examples: heating elements in toasters, hair dryers, space heaters; light bulb filaments



Examples:

Consider a simple V-R circuit comprising a light bulb. Assume there is a 1.5-volt battery and the light bulb draws a current of 0.2 Amps. Find the R of the light bulb filament:

 $R = \Delta V/I = 1.5V/0.2 A = 7.5 Ω$

A 120-Volt (rel. to ground) household circuit is connected to a lamp; the light bulb filament has R = 240 Ω . Find I.

 $I = \Delta V/R = 120V/240\Omega = 0.5 A$

Resistance is determined by geometry & resistivity

TABLE 17.1

Material	$\begin{array}{c} \textbf{Resistivity} \\ (\Omega \cdot \textbf{m}) \end{array}$	Temperature Coefficien of Resistivity [(°C) ⁻¹]
Silver	1.59×10^{-8}	3.8×10^{-3}
Copper	1.7×10^{-8}	3.9×10^{-3}
Gold	2.44×10^{-8}	3.4×10^{-3}
Aluminum	2.82×10^{-8}	3.9×10^{-3}
Tungsten	5.6×10^{-8}	4.5×10^{-3}
Iron	10.0×10^{-8}	5.0×10^{-3}
Platinum	11×10^{-8}	3.92×10^{-3}
Lead	22×10^{-8}	3.9×10^{-3}
Nichrome ^a	150×10^{-8}	0.4×10^{-3}
Carbon	3.5×10^{5}	-0.5×10^{-3}
Germanium	0.46	-48×10^{-3}
Silicon	640	-75×10^{-3}
Glass	$10^{10} - 10^{14}$	
Hard rubber	$\approx 10^{13}$	
Sulfur	10^{15}	
Quartz (fused)	75×10^{16}	

Resistivities and Temperature Coefficients of Resistivity

 ρ = resistivity. units are Ωm

 $R = \rho \frac{L}{A}$

semi-conductors

insulators

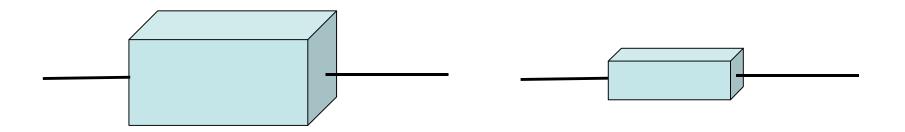
^aA nickel-chromium alloy commonly used in heating elements.

© 2006 Brooks/Cole - Thomson

 $R = \rho \frac{L}{\Delta}$

Resistance caused by charge carriers colliding with the lattice of the conductor. More collisions = more resistance

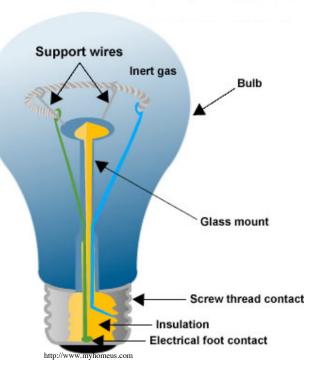
L = length


Double the length \rightarrow double the resistance

(electrons must undergo twice as many collisions across the resistor)

 $R = \rho \frac{L}{A}$

A = cross-section area


Decrease Area: Resistance is raised since flow of charge carriers is constricted

Light bulbs

Englishman Sir Joseph Swan (1878) & American Thomas Edison (1879).

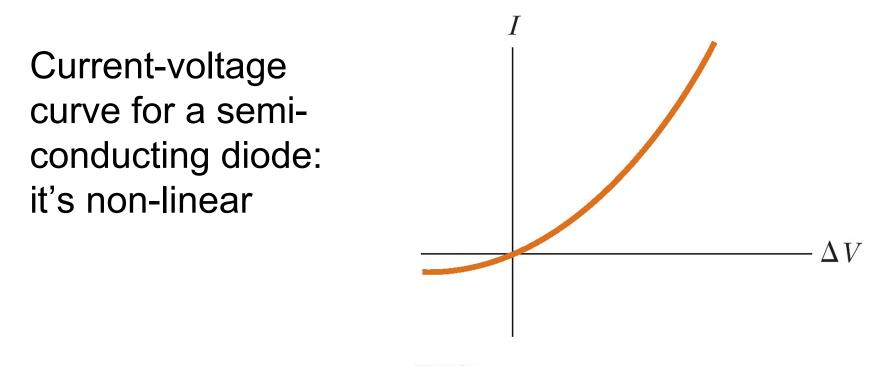
Filament: The atoms are heated to 4000 F to emit visible light. Tungsten is durable under such extreme temperature conditions. (In weaker, less durable metals, atomic vibrations break apart rigid structural bonds, so material becomes molten/liquid)

Inert gas (typically Ar) is used to make sure that filament is housed in an O-free environment to prevent combustion reaction between W and O.

Please note -- I edited some values here compared to the slide I presented in lecture!

Typical tungsten filament: ~1 m long, but 0.05mm in radius.

Calculate typical R.

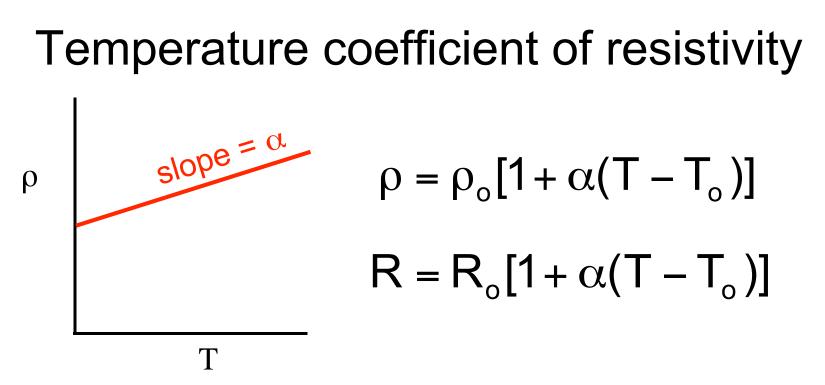

A =
$$\pi (5x10^{-5}m)^2 = 7.9x10^{-9}m^2$$

$$ρ = 5.6x10^{-8} Ωm$$
 (Table 17.1)

R = ρ L/A = (5.6x10⁻⁸ Ωm) (1m)/ 7.9x10⁻⁹ m² = 7.1 Ω

(Note: As per section 17.6, the resistivity value used above is valid only at a temperature of 20°C, so this derived value of R holds only for T=20°C. At T=4000°C, $\rho = \rho_0[1+\alpha(T-T_0)] = 8.3 \times 10^{-7} \Omega m$ (for tungsten, $\alpha = 4.5 \times 10^{-3}/°C$), and R = 106 Ω .)

Some materials exhibit non-Ohmic resistance


In this course, assume Ohmic resistance unless otherwise stated

Temperature dependence of resistance

At higher T, the charge carriers' collisions with the lattice are more frequent.

v_d becomes lower. So I becomes lower.

And R becomes larger for a given potential.

 T_0 = reference temperature

 α = temperature coefficient of resistivity, units of (°C)⁻¹

For Ag, Cu, Au, Al, W, Fe, Pt, Pb: values of α are ~ 3-5×10^-3 (°C)^-1

Example: A platinum resistance thermometer uses the change in R to measure temperature. Suppose $R_0 = 50$ Ω at $T_0=20$ °C.

 α for Pt is 3.92×10⁻³ (°C)⁻¹ in this temperature range. What is R when T = 50.0 °C?

$$\mathsf{R} = \mathsf{R}_{\mathsf{o}}[\mathsf{1} + \alpha(\mathsf{T} - \mathsf{T}_{\mathsf{o}})]$$

R = $50\Omega [1 + 3.92 \times 10^{-3} (^{\circ}C)^{-1} (30.0 \ ^{\circ}C)] = 55.88 \ \Omega$

Temperature coefficient of resistivity

Example: A platinum resistance thermometer has a resistance $R_0 = 50.0 \Omega$ at $T_0=20 \ ^\circ$ C. α for Pt is 3.92×10^{-3} (°C)⁻¹. The thermometer is immersed in a vessel containing melting tin, at which point R increases to 91.6 Ω . What is the melting point of tin?

$$R = R_{o}[1 + \alpha(T - T_{o})]$$
91.6\Omega = 50\Omega [1 + 3.92 \times 10^{-3} (°C)^{-1} (T-20°C)]
1.83 = [1 + 3.92 \times 10^{-3} (°C)^{-1} (T-20°C)]
0.83 = 3.92 \times 10^{-3} (°C)^{-1} (T-20°C)
212°C = T-20°C
T = 232 °C