2 Charged Planes

Equipotential surfaces are parallel to the planes and \perp to the E-field lines

Capactitors & Capacitance

Capacitor: a device for storing electrical potential energy

Can also be rapidly discharged to release a large amount of energy at once

Applications: camera flashes, automobile ignition systems, computer memory, laser flash lamps, defibrillators

Laser Fusion at the Nat'l Ignition Facility, Livermore, CA. 10⁶ J released in μ s: Power ~ 10¹² W

Credit:: LLNL

Note: +Q plate is connected to positive terminal of battery; -Q plate connected to – terminal.

Capacitance is defined as the ability to store separated charge.

 $C = Q / \Delta V$

Unit: FARAD = C/V

Parallel Plate Capacitor

Note E-field inside is pretty uniform. E-field outside is relatively negligible

© 2006 Brooks/Cole - Thomson

Charges like to accumulate at inner edges of plates

Parallel Plate Capacitor

Capacitance depends on geometry:

 $C = \varepsilon_0 A / d$

Variable capacitor: C depends on "overlapping" area

Double the area...

$C \rightarrow 2C$

If plates are HELD at a fixed potential difference ΔV which does not change as you decrease d:

 $d \rightarrow d/2$

What happens to C & E?

If plates are HELD at a fixed potential difference ΔV which does not change as you decrease d:

Capacitors with insulators (for small d)

With insulating material filling the gap, charges cannot travel from one plate to the other, but Efields can permeate.

Example:

A parallel-plate capacitor with $A = 4 \text{ cm}^2$, d = 1 mm. Find its capacitance.

 $C = \varepsilon_o A/d = (8.85 \times 10^{-12} \text{ C}^2/\text{Nm}^2)(4 \times 10^{-4} \text{ m}^2)/(10^{-3} \text{ m})$ = 3.54x10⁻¹² F = 3.54pF

If the capacitor is connected to a 9 Volt battery, how much charge is on each plate?

C = Q/ Δ V →Q = C Δ V = (3.54x10⁻¹² F)(9V) =3.2x10⁻¹¹ C

Calculate the charge density on one plate (assume uniform distribution).

 σ = Q/A = 3.2x10⁻¹¹ C / 4x10⁻⁴ m² = 8x10⁻⁸ C/m²

Calculate the magnitude of the E-field inside the capacitor.

$$E = \sigma/\epsilon_0 = (8x10^{-8} \text{ C/m}^2)/(8.85x10^{-12} \text{ C}^2/\text{Nm}^2)$$

= 9000 N/C

Circuit diagrams

Voltmeter

Measures ΔV between two points in a circuit

From A to B: Potential increases From C to D: Potential decreases

Connecting Capacitors in Series and in Parallel

Goal: find "equivalent" capacitance of a single capacitor (simplifies circuit diagrams and makes it easier to calculate circuit properties)

Note that both capacitors are held are same potential difference ΔV :

 $\Delta V_1 = \Delta V_2 = \Delta V$

Total charge $Q = Q_1 + Q_2$

 $Q = C_1 \Delta V + C_2 \Delta V$

$$C_{eq} = Q/\Delta V = (C_1 \Delta V + C_2 \Delta V)/\Delta V$$

$$\mathbf{C}_{eq} = \mathbf{C}_1 + \mathbf{C}_2$$

For N capacitors in parallel:

$$C_{eq} = C_1 + C_2 + C_3 + \dots + C_N$$

 C_{eq} bigger than any individual C

akin to having larger area:

 $Area(C_{eq}) = Area1 + Area2+...$

Example: Calculate C_{eq}

Note both capacitors' left plates have equal positive charge, +Q (and right plates each have -Q)

Also: $\Delta V = \Delta V_1 + \Delta V_2$

$$\Delta V = Q/C_1 + Q/C_2$$

$$C_{eq} = Q/\Delta V$$

$$1/C_{eq} = \Delta V/C$$

$$1/C_{eq} = (Q/C_1 + Q/C_2)/Q$$

For N capacitors in series: $1/C_{eq} = 1/C_1 + 1/C_2 + 1/C_3 + + 1/C_N$

C_{eq} smaller than any individual C

Example: Find C_{eq} .

 $1/C_{eq} =$ $1/(15\mu F)+1/(10\mu F)+1/(6\mu F)+$ $1/(3\mu F) = 0.667/\mu F$

$$C_{eq} = 1.5 \ \mu F$$

Find Q on each capacitor:

Find the voltage drop across each capacitor:

$$\Delta V_1 = Q/C_1 = 30 \mu C/15 \mu F = 2V$$

$$\Delta V_2 = Q/C_2 = 30 \mu C/10 \mu F = 3V$$

$$\Delta V_3 = Q/C_3 = 30 \mu C/6 \mu F = 5 V$$

$$\Delta V_4 = Q/C_4 = 30 \mu C/3 \mu F = 10 V$$

Notice that $\Delta V_1 + \Delta V_2 + \Delta V_3 + \Delta V_4 = \Delta V$

Energy stored in a capacitor

How much work does it take to charge up a capacitor?

Start with neutral plates, transfer a tiny amount of charge, ΔQ : Amount of work you need to do will equal the amount of charge times the potential difference currently across the plates

Energy stored in a capacitor

Once one ΔQ has been transferred, ΔV has increased, so additional work is needed to transfer a second amount of ΔQ :

To transfer a third ΔQ , you'll need to do work $\Delta W = (2\Delta V)\Delta Q....$

Defibrillators

A fully charged defibrillator contains U = 1.2 kJ of energy stored in a capacitor with C = 1.1×10^{-4} F. Find the voltage needed to store this amount of energy.

 $U = 1/2 C (\Delta V)^2$

$$\Delta V = \sqrt{2 U / C} = \sqrt{(2)(1200 J) / 1.1 \times 10^{-4} F} = 4670 V$$

In a discharge through a patient, 600 J of electrical energy are delivered in 2.5 ms. What's the average power delivered during this time?

```
Avg. Power = Energy/time = 600J/0.0025sec = 2.4x10^5 W
```

Dielectrics

Insulators placed in the gap to increase capacitance by a factor κ : ceramic, paper, glass, plastic, water, glass,...

Originally: ΔV_0 , C_0 , Q_0

When you insert a dielectric, the voltage drops:

 $\Delta V = \Delta V 0 / \kappa$

 κ always > 1 (κ =1 for vacuum)

Q₀ remains the same

 $C = Q/\Delta V = Q/(\Delta V_0/\kappa) = \kappa Q/\Delta V_0$

 $C = \kappa C_0$

Dielectrics

TABLE 16.1

Dielectric Constants and Dielectric Strengths of Various Materials at Room Temperature

Material	Dielectric Constant κ	Dielectric Strength (V/m)
Vacuum	$1.000\ 00$	_
Air	1.00059	$3 imes 10^6$
Bakelite®	4.9	24×10^6
Fused quartz	3.78	$8 imes 10^6$
Pyrex [®] glass	5.6	14×10^6
Polystyrene	2.56	24×10^6
Teflon [®]	2.1	$60 imes 10^6$
Neoprene rubber	6.7	12×10^6
Nylon	3.4	14×10^{6}
Paper	3.7	16×10^6
Strontium titanate	233	$8 imes 10^6$
Water	80	_
Silicone oil	2.5	15×10^6

Dielectrics

 $C = \kappa \varepsilon_0 (A/d)$

For any given d, there's a maximum electric field that can occur inside the dielectric above which conduction will occur.

"Dielectric strength"

For air ($\kappa = 1.00059$), this is E = $3x10^6$ V/m

Permittivity of a dielectric

Consider a capacitor not connected to a battery: $E_0 = \Delta V_0/d$

Add dielectric $E = \Delta V/d = (\Delta V/\kappa)/d$

 $E = E_0/\kappa$

For a capac., $E_o = \sigma/\epsilon_0$ E = $(\sigma/\epsilon_0)/\kappa = \sigma/\epsilon$

 $\varepsilon = \kappa \varepsilon_0$

Permittivity is increased compared to vacuum

Example:

You have a capacitor with plates of area = 20 cm^2 , separated by a 1mm-thick layer of teflon. Find the capacitance and the maximum voltage & charge that can be placed on the capacitor.

Find κ from Table 16.1: For teflon, κ =2.1

Example:

You have a capacitor with plates of area = 20 cm^2 , separated by a 1mm-thick layer of teflon. Find the capacitance and the maximum voltage & charge that can be placed on the capacitor.

Find κ from Table 16.1: For teflon, κ =2.1

Diel. Strength is also found in Table 16.1: $E_{max} = 6x10^7 \text{ V/m}$ $\Delta V_{max} = E_{max}d = (6x10^7 \text{ V/m})(0.001\text{ m})=6x10^4\text{V}$ $Q_{max} = C\Delta V_{max} = (37x10^{-12} \text{ F})(6x10^4 \text{ V})= 2.2x10^6 \text{ C}$

Relies on POLARIZATION: In some molecules, there's a separation between average positions of + and – charges

No external E-field: Molecules are randomly oriented

No external E-field: Molecules are randomly oriented

Apply external E-field: molecules orient themselves to partially align with the field

© 2005 Brooks/Cole - Thomson

No external E-field: Molecules are randomly oriented

Apply external E-field: molecules orient themselves to partially align with the field

© 2005 Brooks/Cole - Thomson

Dielectric produces its own E-field (E_{induced})

 $E_{net} = E_0 - E_{induced}$

Negative poles of molecules attract more +Q onto positive plate, etc.... so capacitor can hold more charge

Neurons:

Outside: Na⁺, Cl⁻

Inside: K⁺, neg. organics

No electric pulse: equal amounts of Na⁺ and K⁺ on either side

Electric pulse: K⁺ ions leave the semi-permeable membrane and migrate outside (for every 3 K⁺'s that leave, 2 Na⁺'s enter). Neg. proteins are too big to go anywhere.

Creates net positive charge outside, net negative inside: ΔV can be as high as ~ 0.05 – 0.10V

Typical d is a few nm.

Typical Capacitance is ~ 2 μ F per square cm of membrane.

Estimate κ , assuming d = 3nm:

Typical d is a few nm.

Typical Capacitance is ~ 2 μ F per square cm of membrane.

Estimate κ , assuming d = 3nm:

$$C = \varepsilon_0 \kappa(A/d) \rightarrow C/A = \varepsilon_0 \kappa/d$$

 $\kappa = (C/A)d / \epsilon_0 = (2x10^{-6} \text{ F/cm}^2)(10^4 \text{ cm}^2/\text{m}^2) (3x10^{-9} \text{ m})/(8.85x10^{-12} \text{ C}^2/\text{Nm}^2) = 6.8$

Compare to the teflon (κ =2.1) capacitor, where C/A was 37pF/20cm² = 1.9pF/cm². Here we have much smaller d (and higher κ).

