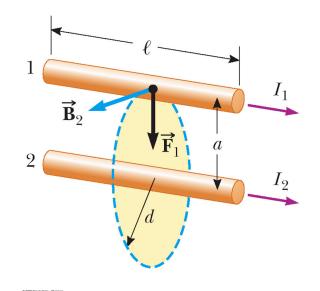
19.8: Magnetic force between two parallel conductors


Assume I_1 and I_2 are in the same direction.

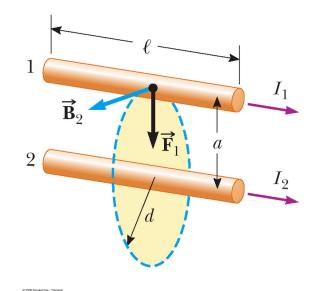
Wire 2 produces a B-field \vec{B}_2 ; at r=d, $|\vec{B}_2|$ is $\mu_0 I_2/2\pi d$

Wire 1 experiences a magnetic force F_1 in the presence of B_2 . (Notation: F_1 = force experienced BY wire 1)

 $F_1 = B_2 I_1 \ell = (\mu_0 I_2 / 2\pi d) I_1 \ell$

Rewrite in terms of force per unit length:

$$\frac{F}{\ell} = \frac{\mu_o \ I_1 \ I_2}{2 \ \pi \ d}$$

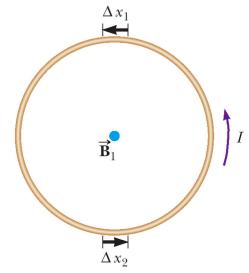

19.8: Magnetic force between two parallel conductors

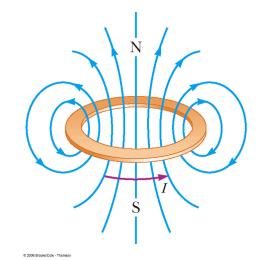
Note that $\overline{F_1}$ is downward (attractive).

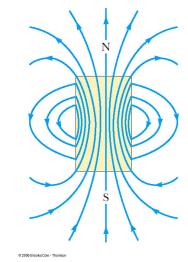
 \overrightarrow{F}_2 on wire 2 is equal to and opposite to \overrightarrow{F}_1 .

Parallel wires carrying currents in the same direction ATTRACT each other.

Parallel wires carrying currents in opposite directions REPEL each other.


 $\frac{F}{\ell} = \frac{\mu_o \ I_1 \ I_2}{2 \ \pi \ d}$


19.9: Magnetic fields of current loops and solenoids


Consider a loop of current: What is the net \vec{B} like at the center of the loop?

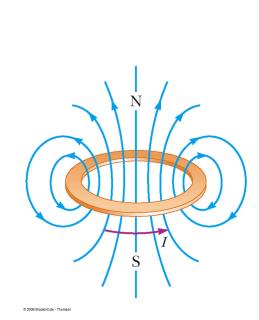
Net effect:

Similar to a magnetic dipole

© 2006 Brooks/Cole - Thomson

19.9: Magnetic fields of current loops and solenoids

Net


effect:

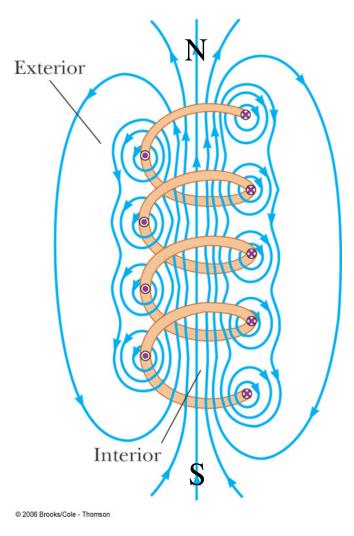
Consider a loop of current: What is the net \vec{B} like at the center of the loop?

 Δx_1

 $\vec{\mathbf{B}}_1$

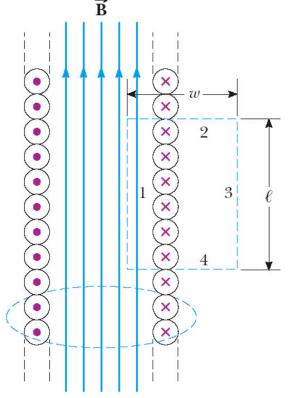
 Δx_9

B at center of loop of radius R can be derived using calculus, and is


```
B=\mu_0 I \ / \ 2R
```

© 2006 Brooks/Cole - Thomson

Stack of current loops = solenoid


When the loop are spaced together tightly enough, the B-field inside is strong and rather uniform, and B-field outside is essentially negligible.

Commonly used in electromagnets, devices used to convert electrical current to magnetic field.

B-field in the center of a solenoid

Use Ampere's Law; choose a closed loop as follows:

Only segment 1 contributes: $B_{\parallel}\Delta \ell = 0$ for other segments.

 $\mathsf{BL} = \mu_0(\mathsf{NI})$

 $B = \mu_0 I (N/L) = \mu_0 I n (n=N/L)$

© 2006 Brooks/Cole - Thomson

Example: An electromagnet consists of 100 turns of wire, and the length is 3.0 cm. The wire carries 20 Amps of current. What's the Bfield at the center of the magnet?

 $B = \mu_0 I (N/L) = 4\pi \times 10^{-7} T m / A * 20 A$ (100/0.03m) = 0.084 A

B-field of a toroid

lbl.gov

 $\Sigma B_{\parallel} \Delta \ell = B 2\pi r$

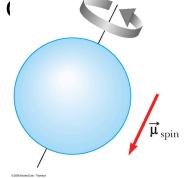
Tokamak: used for fusion energy research

enclosed current on blue line = $\mu_0 N I$

$\mathbf{B} = \mu_0 \mathbf{N} \mathbf{I} / 2\pi \mathbf{r}$

B-field higher towards inner radius (not perfectly uniform), but uniform along each radius

19.10 Magnetic Domains

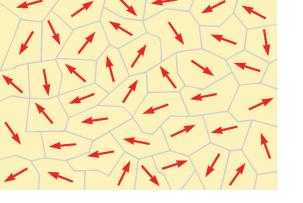

Magnetic materials owe their properties to magnetic dipole moments of electrons in atoms

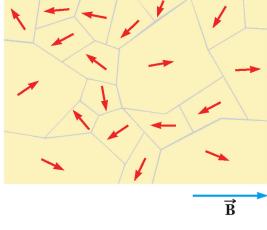
Classical model for electrons in atoms:

1.Orbital motion of electron: like a loop current (but B-field produced by 1 electron can be cancelled out by an oppositely revolving electron in the same atom)

2. "spin" of individual electrons produces much stronger Bfield: each electron itself acts like a magnetic (

Ferromagnetic materials: B-field from spins do not cancel out completely....




Magnetic Domains

Magnetic domains (10⁻⁴ - 10⁻¹ cm): Each domain has a substantial fraction of atoms with magnetic moments coupled. They're separated by domain boundaries.

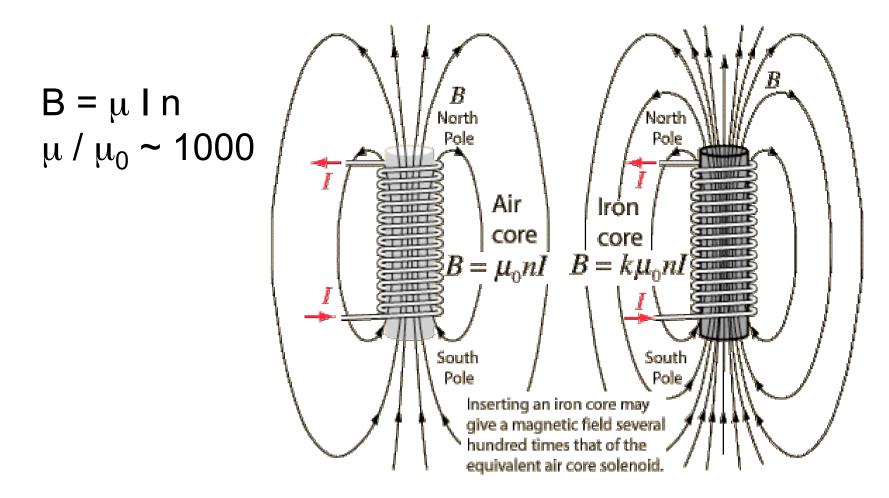
Ferromagnetic materials (Fe, Co, Ni) have these domains

Randomly oriented, but when an external \vec{B} is applied, domains tend to align with magnetic field; domain boundaries adjust accordingly.

Result: material produces its own internal B

 $(\vec{B}_{net} = \vec{B}_{external} + \vec{B}_{internal})$

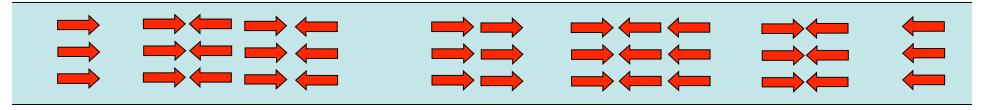
Re-cap:


<u>Soft magnetic materials (e.g. Fe)</u>: Easily magnetized in presence of external B, but doesn't retain magnetization for long. Used as cores for electromagnets.

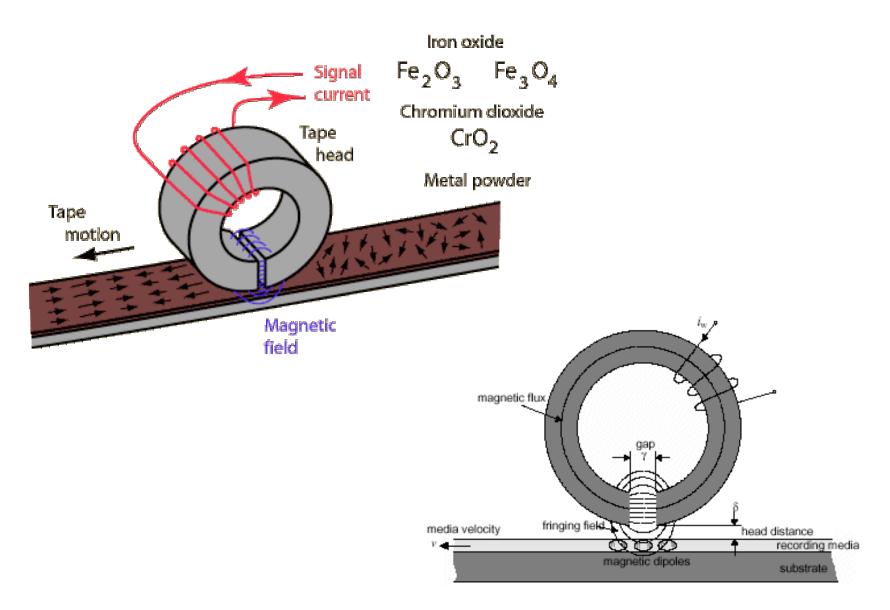
When external B is turned off, thermal agitation returns dipoles to random orientations

<u>Hard magnetic materials</u> (e.g. metal alloys: Alnico (Aluminum, Nickel, Cobalt)): Harder to magnetize (requires higher $\vec{B}_{external}$) but retains the magnetization for a long time. Used as permanent magnets.

Air-core vs Fe-core solenoid electromagnets


Total B-field is much larger with an Fe-core

Magnetic recording


computer drives; cassette/VCR tapes; credit card strips

Information coded in the orientation of magnetic domains

Magnetization can be read on playback to generate a voltage signal

Info can be erased by applying VERY STRONG Bfield to re-align all domains.

Basic Ring read/write head.