18.5 RC Circuits

Introduction to time-dependent currents and voltages.

Applications: timing circuits, clocks, computers, charging + discharging capacitors

RC circuit: charging

At time t=0, close Switch

RC circuit: charging

Time constant τ = RC

RC is called the time constant: it's a measure of how fast the capacitor is charged up.

It has units of time: RC = (V/I)(q/V) = q/I = q / (q/t) = t

At t = RC, Q(t) and $\Delta V_{C}(t)$ go to 1 – 1/e = 0.63 of the final values

At t= RC, I(t) and $\Delta V_R(t)$ go to 1/e of the initial values

Time constant τ = RC

Think about why increasing R and/or C would increase the time to charge up the capacitor:

When charging up: τ will increase with C because the capacitor can store more charge. Increases with R because the flow of current is lower.

Time constant τ = RC

You want to make a so-called flasher circuit that charges a capacitor through a resistor up to a voltage at which a neon bulb discharges once every 5.0 sec. If you have a 10 microfarad capacitor what resistor do you need?

Solution: Have the flash point be equal to 0.63 $\Delta V_{C,max}$ (I.e., let t= τ)

 $\tau = RC \rightarrow R = \tau/C = 5s/10^{-6}F = 5 \times 10^{5} Ohms$

This is a very big resistance, but 5 seconds is pretty long in "circuit" time

© 2006 Brooks/Cole - Thomse

First, disconnect from EMF source.

Q is at maximum value, $Q_{max} = C\epsilon$ ΔV_{C} is at maximum value of $\Delta V_{C,max} = \epsilon$

Then close switch at time t=0.

© 2006 Brooks/Cole - Thomson

Circuit now has only R and C.

From loop rule: $-\Delta V_{C} - \Delta V_{R} = 0$

© 2006 Brooks/Cole - Thomson

 ΔV_R will track ΔV_C

So I = $\Delta V_R/R$ will jump from 0 to ϵ/R at t=0, then exponentially decay

	t=0		$t \rightarrow \infty$
ΔV_{C}	3	$\epsilon(e^{-(t/\tau)})$	0
Q	Q _{max} =CE	$C\epsilon(e^{-(t/\tau)})$	0
ΔV_{R}	8	$\mathbf{E}(e^{-(t/\tau)})$	0
Ι	ε/R	$\epsilon/R(e^{-(t/\tau)})$	0

Think about why increasing R and/or C would increase the time to discharge the capacitor:

 τ will increase with C because there is more stored charge in the capacitor to unload. τ increases with R because the flow of current is lower.

Given a 12 μ F capacitor being discharged through a 2000 Ω resistor. How long does it take for the voltage drop across the resistor to reach 5% of the initial voltage?

Solution:

First, calculate τ : τ =2000 Ω * 12x10⁻⁶ F = 24 ms

Then: $V = V_0 \exp(-t/\tau)$

 $V / V_0 = \exp(-t/\tau)$

Take In of both sides: $\ln(V/V_0) = -t/\tau$

Solve for t: $t = -\tau^* \ln(V/V_0) = -0.024 \text{ s} (\ln(0.05)) = 0.072 \text{ sec}$

Household circuits

Circuits are in parallel. All devices have same potential. If one device fails, others will continue to work at required potential.

 ΔV is 120 V above ground potential

Heavy-duty appliances (electric ranges, clothes dryers) require 240 V. Power co. supplies a line which is 120V BELOW ground potential so TOTAL potential drop is 240 V

Circuit breakers or fuses are connected in series.

Fuses: melt when I gets too high, opening the circuit

Circuit breakers: opens circuit without melting. So they can be reset.

Many circuit breakers use electromagnets, to be discussed in future chapters

Example: Consider a microwave oven, a toaster, and a space heater, all operating at 120 V:

```
Toaster: 1000 W
Microwave: 800 W
Heater: 1300 W
```

```
How much current does each draw? I = P/\DeltaV
Toaster: I = 1000W/120V = 8.33A
Micro: I = 800W/120V = 6.67A
Heater: I = 1300W/120V = 10.8 A
```

Total current (if all operated simultaneously)= 25.8 A (So the breaker should be able to handle this level of current, otherwise it'll trip)

Electrical Safety

© 2006 Brooks/Cole - Thomson

© 2006 Brooks/Cole - Thomson

© 2006 Brooks/Cole - Thomson

© 2006 Brooks/Cole - Thomson

$R_{skin(dry)} \sim 10^5 \Omega$

TABLE 28-1 Effects of Externally Applied Current on the Human Organism

CURRENT RANGE	EFFECT
0.5–2 mA	Threshold of sensation
10–15 mA	Involuntary muscle contractions; can't let go
15–100 mA	Severe shock; muscle control lost; breathing difficult
100–200 mA	Fibrillation of heart; death within minutes
>200 mA	Cardiac arrest; breathing stops; severe burns

So for $\Delta V = 10,000V$:

 $I = \Delta V/R = 10,000V/10^5 \Omega = 0.1 A = dangerous.$

But $R_{skin(wet)}$ is much, much lower, ~10³ Ω : So in this case, when $\Delta V = 120V$, I is also ~ 0.1 A = dangerous

18.8: Conduction of electrical signals by neutrons

Ch. 19: Magnetism

Bar magnets.

Planetary magnetic fields.

Forces on moving charges.

Electrical motors (electrical energy →mechanical energy)

Generators (mechanical \rightarrow electrical energy)

Magnetic data storage: magnetic tapes, computer drives

MRI (magnetic resonance imaging)

A magnet has two poles (magnetic dipole) North–South

Opposite poles attract S N \rightarrow \leftarrow S N Like poles repel S N \leftarrow N S

stable

unstable

No magnetic monopoles

No *magnetic monopoles* are found (i.e. there is no magnetic equivalent of charge).

If you cut a magnetic bar in two....

You get two smaller magnets:

You do not get separate N & S magnetic charges -- no matter how small the magnet. This continues down to the scale of a single atom!

Magnetic Field Lines

B-field lines flow from N to S pole.

Can be traced out using a compass

When placed in external magnetic fields, magnetic dipoles (e.g., compass needle) orient themselves parallel to B-field lines.

Magnetic Field Lines

© 2006 Brooks/Cole - Thomson

Can also be traced out with Fe filings

Soft/Hard Magnetic materials

Soft magnetic materials (e.g., Fe): Easily magnetized, but can lose magnetization easily

Hard materials more difficult to magnetize, but retain magnetism for a long time ("permanent magnet") Ex.: metal alloys such as Alnico (Aluminum, Nickel, Cobalt)

Ferromagnetic materials: materials which can become magnetized and can be attracted to other magnets

Magna-doodle

Close-up of the honeycombed structure of the display

The tip of the magnetic pen

Ferromagnetic fluids

"Leaping ferrofluid demonstration:" http://www.youtube.com/watch?v=Rg9xSLdXKXk

Sachiko Kodama, Yasushi Miyajima "Morpho Towers -- Two Stand": <u>http://www.youtube.com/watch?v=me5Zzm2TXh4</u> (see also sachikokodama.com)

Ferrofluid: how it works: http://www.youtube.com/watch?v=PvtUt02zVAs

Ferrofluid on the track of a Magnetized Meatgrinder http://www.youtube.com/watch?v=OE2pB1pyZN0