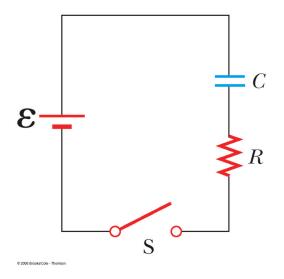
18.5 RC Circuits

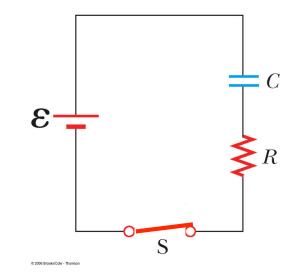
Introduction to time-dependent currents and voltages.

Applications: timing circuits, clocks, computers, charging + discharging capacitors

An RC circuit



At time t=0, close Switch

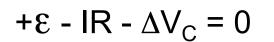


An RC circuit

At time t=0, close switch

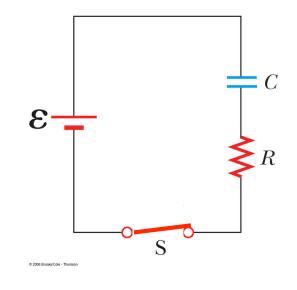
Initially (at t=0), Q = 0. ΔV_C (at t=0) = Q(t=0) / C = 0

Loop Rule: $\Sigma \Delta V = 0 = +\varepsilon - \Delta V_R - \Delta V_C$



So when charge = 0 (which occurs at t=0), $\varepsilon = IR$ and so $I = \varepsilon/R$

(at this instant, capacitor has no effect)



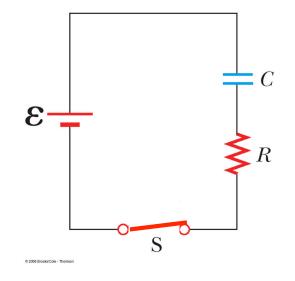
Immediately after time t=0: Current starts to flow. Charge starts to accumulate on Capacitor (at a rate I=dQ/dt).

As Q increases over time, $\Delta V_{C} = Q/C$ also increases.

But remember $\Delta V_{\rm C} + \Delta V_{\rm R} = \epsilon$.

So ΔV_R is decreasing over time.

And I through the resistor = $\Delta V_R/R$ is also decreasing.



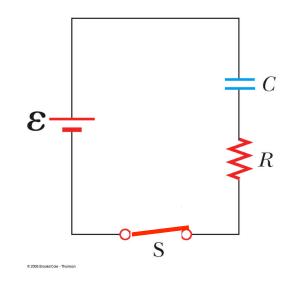
After a very long time:

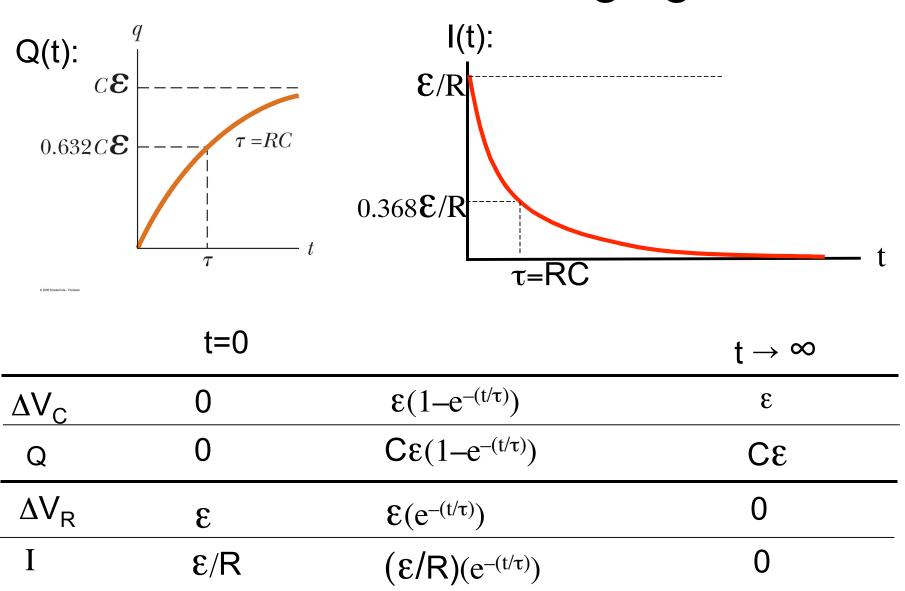
Charge accumulates until Q reaches its maximum:

 ΔV_C goes to ϵ . Total Q on the capacitor goes to $C\epsilon$.

 $+\varepsilon = \Delta V_{C} + \Delta V_{R}$

 ΔV_{R} goes to zero. And I goes to zero.





Exponential decay

Rate of decay is proportional to amount of species.

Other applications: Nuclear decay, some chemical reactions

Atmospheric pressure decreases exponentially with height

If an object of one temperature is exposed to a medium of another temperature, then the temperature difference between the object and the medium undergoes exponential decay.

Absorption of electromagnetic radiation by a medium (intensity decreases exponentially with distance into medium)

Time constant τ = RC

RC is called the time constant: it's a measure of how fast the capacitor is charged up.

It has units of time: RC = (V/I)(q/V) = q/I = q / (q/t) = t

At t = RC, Q(t) and $\Delta V_{C}(t)$ go to 1 – 1/e = 0.63 of the final values

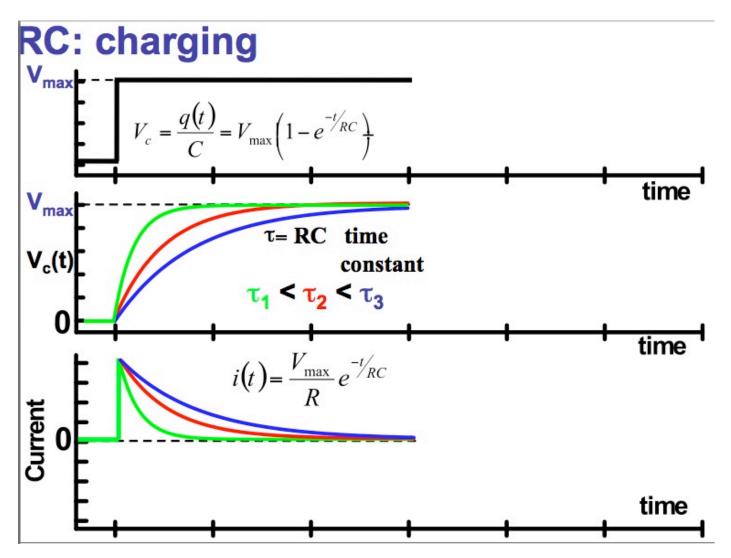
At t= RC, I(t) and $\Delta V_R(t)$ go to 1/e of the initial values

Time constant τ = RC

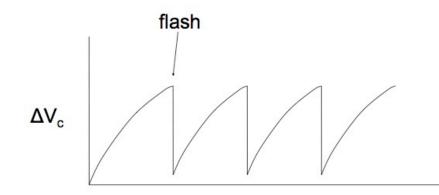
Think about why increasing R and/or C would increase the time to charge up the capacitor:

When charging up: τ will increase with C because the capacitor can store more charge. Increases with R because the flow of current is lower.

Time constant τ = RC



You want to make a so-called flasher circuit that charges a capacitor through a resistor up to a voltage at which a neon bulb discharges once every 5.0 sec. If you have a 10 microfarad capacitor what resistor do you need?

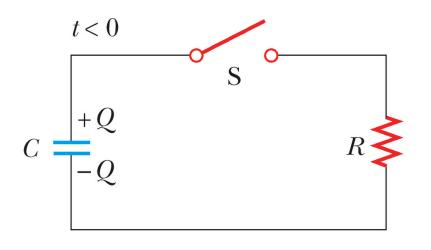


Solution: Have the flash point be equal to 0.63 $\Delta V_{C,max}$

 $\tau = RC \rightarrow R = \tau/C = 5s/10^{-6}F = 5 \times 10^{5} Ohms$

This is a very big resistance, but 5 seconds is pretty long in "circuit" time

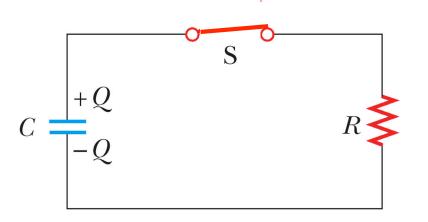
Discharging an RC circuit:



© 2006 Brooks/Cole - Thomse

First, disconnect from EMF source.

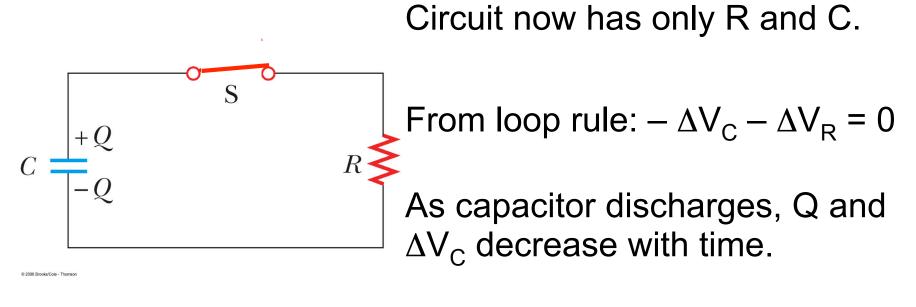
Q is at maximum value, $Q_{max} = C\varepsilon$ ΔV_{C} is at maximum value of $\Delta V_{C,max} = \varepsilon$ Discharging an RC circuit:



Then close switch at time t=0.

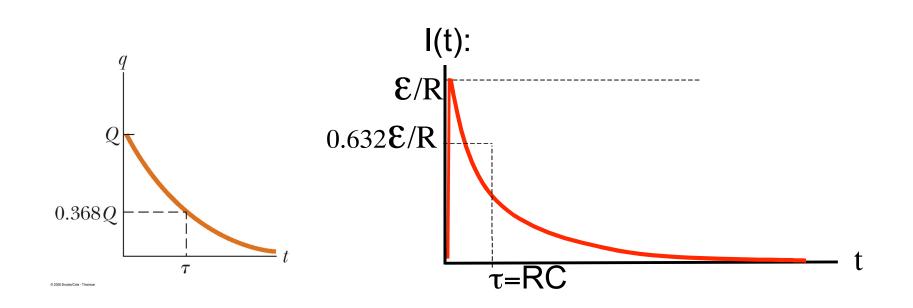
© 2006 Brooks/Cole - Thomson

Discharging an RC circuit:



 ΔV_R will track ΔV_C

So I = $\Delta V_R/R$ will jump from 0 to ϵ/R at t=0, then exponentially decay



	t=0		$t \rightarrow \infty$
ΔV_{C}	ε	$\epsilon(e^{-(t/\tau)})$	0
Q	$Q_{max} = C E$	$C\epsilon(e^{-(t/\tau)})$	0
ΔV_R	8	$\epsilon(e^{-(t/\tau)})$	0
Ι	ε/R	$\epsilon/R(e^{-(t/\tau)})$	0

Think about why increasing R and/or C would increase the time to discharge the capacitor:

 τ will increase with C because there is more stored charge in the capacitor to unload. τ increases with R because the flow of current is lower.

Given a 12 μ F capacitor being discharged through a 2000 Ω resistor. How long does it take for the voltage drop across the resistor to reach 5% of the initial voltage?

Solution:

First, calculate τ : τ =2000 Ω * 12x10⁻⁶ F = 24 ms

Then: $V = V_0 \exp(-t/\tau)$

 $V / V_0 = \exp(-t/\tau)$

Take In of both sides: $ln(V/V_0) = -t/\tau$

Solve for t: $t = -\tau^* \ln(V/V_0) = -0.024 \text{ s} (\ln(0.05)) = 0.072 \text{ sec}$