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Chapter 8

Nonequilibrium Phenomena

8.1 References

– H. Smith and H. H. Jensen, Transport Phenomena (Oxford, 1989)
An outstanding, thorough, and pellucid presentation of the theory of Boltzmann transport in classical and
quantum systems.

– P. L. Krapivsky, S. Redner, and E. Ben-Naim, A Kinetic View of Statistical Physics (Cambridge, 2010)
Superb, modern discussion of a broad variety of issues and models in nonequilibrium statistical physics.

– E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon, 1981)
Volume 10 in the famous Landau and Lifshitz Course of Theoretical Physics. Surprisingly readable, and
with many applications (some advanced).

– M. Kardar, Statistical Physics of Particles (Cambridge, 2007)
A superb modern text, with many insightful presentations of key concepts. Includes a very instructive
derivation of the Boltzmann equation starting from the BBGKY hierarchy.

– J. A. McLennan, Introduction to Non-equilibrium Statistical Mechanics (Prentice-Hall, 1989)
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– N. G. Van Kampen, Stochastic Processes in Physics and Chemistry (3rd edition, North-Holland, 2007)
This is a very readable and useful text. A relaxed but meaty presentation.

1



2 CHAPTER 8. NONEQUILIBRIUM PHENOMENA

8.2 Equilibrium, Nonequilibrium and Local Equilibrium

Classical equilibrium statistical mechanics is described by the full N -body distribution,

f0(x1, . . . ,xN ; p1, . . . ,pN ) =





Z−1
N · 1

N ! e
−βĤN (p,x) OCE

Ξ−1 · 1
N ! e

βµNe−βĤN (p,x) GCE .

(8.1)

We assume a Hamiltonian of the form

ĤN =

N∑

i=1

p2
i

2m
+

N∑

i=1

v(xi) +

N∑

i<j

u(xi − xj), (8.2)

typically with v = 0, i.e. only two-body interactions. The quantity

f0(x1, . . . ,xN ; p1, . . . ,pN )
ddx1 d

dp1

hd
· · · d

dxN ddpN
hd

(8.3)

is the probability, under equilibrium conditions, of finding N particles in the system, with particle #1 lying within

d3x1 of x1 and having momentum within ddp1 of p1, etc. The temperature T and chemical potential µ are constants,
independent of position. Note that f({xi}, {pi}) is dimensionless.

Nonequilibrium statistical mechanics seeks to describe thermodynamic systems which are out of equilibrium,
meaning that the distribution function is not given by the Boltzmann distribution above. For a general nonequilib-
rium setting, it is hopeless to make progress – we’d have to integrate the equations of motion for all the constituent
particles. However, typically we are concerned with situations where external forces or constraints are imposed
over some macroscopic scale. Examples would include the imposition of a voltage drop across a metal, or a tem-
perature differential across any thermodynamic sample. In such cases, scattering at microscopic length and time
scales described by the mean free path ℓ and the collision time τ work to establish local equilibrium throughout the
system. A local equilibrium is a state described by a space and time varying temperature T (r, t) and chemical
potential µ(r, t). As we will see, the Boltzmann distribution with T = T (r, t) and µ = µ(r, t) will not be a solution
to the evolution equation governing the distribution function. Rather, the distribution for systems slightly out of
equilibrium will be of the form f = f0 + δf , where f0 describes a state of local equilibrium.

We will mainly be interested in the one-body distribution

f(r,p; t) =

N∑

i=1

〈
δ
(
xi(t) − r) δ(pi(t) − p

) 〉

= N

∫ N∏

i=2

ddxi d
dpi f(r,x2, . . . ,xN ; p,p2, . . . ,pN ; t) .

(8.4)

In this chapter, we will drop the 1/~ normalization for phase space integration. Thus, f(r,p, t) has dimensions of
h−d, and f(r,p, t) d3r d3p is the average number of particles found within d3r of r and d3p of p at time t.

In the GCE, we sum the RHS above over N . Assuming v = 0 so that there is no one-body potential to break
translational symmetry, the equilibrium distribution is time-independent and space-independent:

f0(r,p) = n (2πmkBT )−3/2 e−p2/2mkBT , (8.5)

where n = N/V or n = n(T, µ) is the particle density in the OCE or GCE. From the one-body distribution we can
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compute things like the particle current, j, and the energy current, jε:

j(r, t) =

∫
ddp f(r,p; t)

p

m
(8.6)

jε(r, t) =

∫
ddp f(r,p; t) ε(p)

p

m
, (8.7)

where ε(p) = p2/2m. Clearly these currents both vanish in equilibrium, when f = f0, since f0(r,p) depends
only on p2 and not on the direction of p. In a steady state nonequilibrium situation, the above quantities are
time-independent.

Thermodynamics says that
dq = T ds = dε− µdn , (8.8)

where s, ε, and n are entropy density, energy density, and particle density, respectively, and dq is the differential
heat density. This relation may be case as one among the corresponding current densities:

jq = T js = jε − µ j . (8.9)

Thus, in a system with no particle flow, j = 0 and the heat current jq is the same as the energy current jε.

When the individual particles are not point particles, they possess angular momentum as well as linear momen-
tum. Following Lifshitz and Pitaevskii, we abbreviate Γ = (p,L) for these two variables for the case of diatomic
molecules, and Γ = (p,L, n̂ · L) in the case of spherical top molecules, where n̂ is the symmetry axis of the top.
We then have, in d = 3 dimensions,

dΓ =






d3p point particles

d3p L dL dΩL diatomic molecules

d3p L2 dL dΩL d cosϑ symmetric tops ,

(8.10)

where ϑ = cos−1(n̂ · L̂). We will call the set Γ the ‘kinematic variables’. The instantaneous number density at r is
then

n(r, t) =

∫
dΓ f(r, Γ ; t) . (8.11)

One might ask why we do not also keep track of the angular orientation of the individual molecules. There are
two reasons. First, the rotations of the molecules are generally extremely rapid, so we are justified in averaging
over these motions. Second, the orientation of, say, a rotor does not enter into its energy. While the same can be
said of the spatial position in the absence of external fields, (i) in the presence of external fields one must keep
track of the position coordinate r since there is physical transport of particles from one region of space to another,
and (iii) the collision process, which as we shall see enters the dynamics of the distribution function, takes place
in real space.

8.3 Boltzmann Transport Theory

8.3.1 Derivation of the Boltzmann equation

For simplicity of presentation, we assume point particles. Recall that

f(r,p, t) d3r d3p ≡
{

# of particles with positions within d3r of

r and momenta within d3p of p at time t.
(8.12)
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We now ask how the distribution functions f(r,p, t) evolves in time. It is clear that in the absence of collisions,
the distribution function must satisfy the continuity equation,

∂f

∂t
+ ∇·(uf) = 0 . (8.13)

This is just the condition of number conservation for particles. Take care to note that ∇ and u are six-dimensional
phase space vectors:

u = ( ẋ , ẏ , ż , ṗx , ṗy , ṗz ) (8.14)

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z
,
∂

∂px
,
∂

∂py
,
∂

∂pz

)
. (8.15)

The continuity equation describes a distribution in which each constituent particle evolves according to a pre-
scribed dynamics, which for a mechanical system is specified by

dr

dt
=
∂H

∂p
= v(p) ,

dp

dt
= −∂H

∂r
= Fext , (8.16)

where F is an external applied force. Here,

H(p, r) = ε(p) + Uext(r) . (8.17)

For example, if the particles are under the influence of gravity, then Uext(r) = mg · r and F = −∇Uext = −mg.

Note that as a consequence of the dynamics, we have ∇ ·u = 0, i.e. phase space flow is incompressible, provided
that ε(p) is a function of p alone, and not of r. Thus, in the absence of collisions, we have

∂f

∂t
+ u ·∇f = 0 . (8.18)

The differential operator Dt ≡ ∂t + u ·∇ is sometimes called the ‘convective derivative’, because Dtf is the time
derivative of f in a comoving frame of reference.

Next we must consider the effect of collisions, which are not accounted for by the semiclassical dynamics. In a
collision process, a particle with momentum p and one with momentum p̃ can instantaneously convert into a pair
with momenta p′ and p̃′, provided total momentum is conserved: p + p̃ = p′ + p̃′. This means that Dtf 6= 0.
Rather, we should write

∂f

∂t
+ ṙ · ∂f

∂r
+ ṗ · ∂f

∂p
=

(
∂f

∂t

)

coll

(8.19)

where the right side is known as the collision integral. The collision integral is in general a function of r, p, and t
and a functional of the distribution f .

After a trivial rearrangement of terms, we can write the Boltzmann equation as

∂f

∂t
=

(
∂f

∂t

)

str

+

(
∂f

∂t

)

coll

, (8.20)

where (
∂f

∂t

)

str

≡ −ṙ · ∂f
∂r

− ṗ · ∂f
∂p

(8.21)

is known as the streaming term. Thus, there are two contributions to ∂f/∂t : streaming and collisions.



8.3. BOLTZMANN TRANSPORT THEORY 5

8.3.2 Collisionless Boltzmann equation

In the absence of collisions, the Boltzmann equation is given by

∂f

∂t
+
∂ε

∂p
· ∂f
∂r

− ∇Uext ·
∂f

∂p
= 0 . (8.22)

In order to gain some intuition about how the streaming term affects the evolution of the distribution f(r,p, t),
consider a case where Fext = 0. We then have

∂f

∂t
+

p

m
· ∂f
∂r

= 0 . (8.23)

Clearly, then, any function of the form

f(r,p, t) = ϕ
(
r − v(p) t , p

)
(8.24)

will be a solution to the collisionless Boltzmann equation, where v(p) = ∂ε
∂p . One possible solution would be the

Boltzmann distribution,

f(r,p, t) = eµ/kBT e−p2/2mkBT , (8.25)

which is time-independent1. Here we have assumed a ballistic dispersion, ε(p) = p2/2m.

For a slightly less trivial example, let the initial distribution be ϕ(r,p) = Ae−r2/2σ2

e−p2/2κ2

, so that

f(r,p, t) = Ae−
(
r− pt

m

)2
/2σ2

e−p2/2κ2

. (8.26)

Consider the one-dimensional version, and rescale position, momentum, and time so that

f(x, p, t) = Ae−
1
2 (x̄−p̄ t̄)2 e−

1
2 p̄2

. (8.27)

Consider the level sets of f , where f(x, p, t) = Ae−
1
2α2

. The equation for these sets is

x̄ = p̄ t̄±
√
α2 − p̄2 . (8.28)

For fixed t̄, these level sets describe the loci in phase space of equal probability densities, with the probability
density decreasing exponentially in the parameter α2. For t̄ = 0, the initial distribution describes a Gaussian
cloud of particles with a Gaussian momentum distribution. As t̄ increases, the distribution widens in x̄ but not
in p̄ – each particle moves with a constant momentum, so the set of momentum values never changes. However,
the level sets in the (x̄ , p̄) plane become elliptical, with a semimajor axis oriented at an angle θ = ctn−1(t) with
respect to the x̄ axis. For t̄ > 0, he particles at the outer edges of the cloud are more likely to be moving away from
the center. See the sketches in fig. 8.1

Suppose we add in a constant external force Fext. Then it is easy to show (and left as an exercise to the reader to
prove) that any function of the form

f(r,p, t) = Aϕ

(
r − p t

m
+

Fextt
2

2m
, p − Fextt

m

)
(8.29)

satisfies the collisionless Boltzmann equation (ballistic dispersion assumed).

1Indeed, any arbitrary function of p alone would be a solution. Ultimately, we require some energy exchanging processes, such as collisions,
in order for any initial nonequilibrium distribution to converge to the Boltzmann distribution.
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Figure 8.1: Level sets for a sample f(x̄, p̄, t̄) = Ae−
1
2 (x̄−p̄t̄)2e−

1
2 p̄2

, for values f = Ae−
1
2α2

with α in equally spaced
intervals from α = 0.2 (red) to α = 1.2 (blue). The time variable t̄ is taken to be t̄ = 0.0 (upper left), 0.2 (upper
right), 0.8 (lower right), and 1.3 (lower left).

8.3.3 Collisional invariants

Consider a function A(r,p) of position and momentum. Its average value at time t is

A(t) =

∫
d3r d3p A(r,p) f(r,p, t) . (8.30)

Taking the time derivative,

dA

dt
=

∫
d3r d3p A(r,p)

∂f

∂t

=

∫
d3r d3p A(r,p)

{
− ∂

∂r
· (ṙf) − ∂

∂p
· (ṗf) +

(
∂f

∂t

)

coll

}

=

∫
d3r d3p

{(
∂A

∂r
· dr
dt

+
∂A

∂p
· dp
dt

)
f +A(r,p)

(
∂f

∂t

)

coll

}
.

(8.31)

Hence, if A is preserved by the dynamics between collisions, then2

dA

dt
=
∂A

∂r
· dr
dt

+
∂A

∂p
· dp
dt

= 0 . (8.32)

2Recall from classical mechanics the definition of the Poisson bracket, {A, B} = ∂A
∂r · ∂B

∂p − ∂B
∂r · ∂A

∂p . Then from Hamilton’s equations ṙ = ∂H
∂p

and ṗ = − ∂H
∂r , where H(p,r, t) is the Hamiltonian, we have dA

dt
= {A, H}. Invariants have zero Poisson bracket with the Hamiltonian.
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We therefore have that the rate of change of A is determined wholly by the collision integral

dA

dt
=

∫
d3r d3p A(r,p)

(
∂f

∂t

)

coll

. (8.33)

Quantities which are then conserved in the collisions satisfy Ȧ = 0. Such quantities are called collisional invariants.
Examples of collisional invariants include the particle number (A = 1), the components of the total momentum
(A = pµ) (in the absence of broken translational invariance, due e.g. to the presence of walls), and the total energy
(A = ε(p)).

8.3.4 Scattering processes

What sort of processes contribute to the collision integral? There are two broad classes to consider. The first
involves potential scattering, where a particle in state |Γ 〉 scatters, in the presence of an external potential, to a
state |Γ ′〉. Recall that Γ is an abbreviation for the set of kinematic variables, e.g. Γ = (p,L) in the case of a diatomic
molecule. For point particles, Γ = (px, py, pz) and dΓ = d3p.

We now define the function w
(
Γ ′|Γ

)
such that

w
(
Γ ′|Γ

)
f(r, Γ ; t) dΓ dΓ ′ =

{
rate at which a particle within dΓ of (r, Γ )

scatters to within dΓ ′ of (r, Γ ′) at time t.
(8.34)

The units of w dΓ are therefore 1/T . The differential scattering cross section for particle scattering is then

dσ =
w
(
Γ ′|Γ

)

n |v| dΓ ′ , (8.35)

where v = p/m is the particle’s velocity and n the density.

The second class is that of two-particle scattering processes, i.e. |ΓΓ1〉 → |Γ ′Γ ′
1〉. We define the scattering function

w
(
Γ ′Γ ′

1 |ΓΓ1

)
by

w
(
Γ ′Γ ′

1 |ΓΓ1

)
f2(r, Γ ; r, Γ1 ; t) dΓ dΓ1 dΓ

′ dΓ ′
1 =






rate at which two particles within dΓ of (r, Γ )

and within dΓ1 of (r, Γ1) scatter into states within

dΓ ′ of (r, Γ ′) and dΓ ′
1 of (r, Γ ′

1) at time t ,

(8.36)

where

f2(r,p ; r′,p′ ; t) =
〈∑

i,j

δ
(
xi(t) − r) δ(pi(t) − p

)
δ
(
xj(t) − r′) δ(pj(t) − p′) 〉 (8.37)

is the nonequilibrium two-particle distribution for point particles. The differential scattering cross section is

dσ =
w
(
Γ ′Γ ′

1 |ΓΓ1

)

|v − v1|
dΓ ′ dΓ ′

1 . (8.38)

We assume, in both cases, that any scattering occurs locally, i.e. the particles attain their asymptotic kinematic states
on distance scales small compared to the mean interparticle separation. In this case we can treat each scattering
process independently. This assumption is particular to rarefied systems, i.e. gases, and is not appropriate for
dense liquids. The two types of scattering processes are depicted in fig. 8.2.
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Figure 8.2: Left: single particle scattering process |Γ 〉 → |Γ ′〉. Right: two-particle scattering process |ΓΓ1〉 →
|Γ ′Γ ′

1〉.

In computing the collision integral for the state |r, Γ 〉, we must take care to sum over contributions from transitions
out of this state, i.e. |Γ 〉 → |Γ ′〉, which reduce f(r, Γ ), and transitions into this state, i.e. |Γ ′〉 → |Γ 〉, which increase
f(r, Γ ). Thus, for one-body scattering, we have

D

Dt
f(r, Γ ; t) =

(
∂f

∂t

)

coll

=

∫
dΓ ′

{
w(Γ |Γ ′) f(r, Γ ′; t) − w(Γ ′ |Γ ) f(r, Γ ; t)

}
. (8.39)

For two-body scattering, we have

D

Dt
f(r, Γ ; t) =

(
∂f

∂t

)

coll

=

∫
dΓ1

∫
dΓ ′
∫
dΓ ′

1

{
w
(
ΓΓ1 |Γ ′Γ ′

1

)
f2(r, Γ

′; r, Γ ′
1; t)

− w
(
Γ ′Γ ′

1 |ΓΓ1

)
f2(r, Γ ; r, Γ1; t)

}
.

(8.40)

Unlike the one-body scattering case, the kinetic equation for two-body scattering does not close, since the LHS
involves the one-body distribution f ≡ f1 and the RHS involves the two-body distribution f2. To close the
equations, we make the approximation

f2(r, Γ
′; r̃, Γ̃ ; t) ≈ f(r, Γ ; t) f(r̃, Γ̃ ; t) . (8.41)

We then have

D

Dt
f(r, Γ ; t) =

∫
dΓ1

∫
dΓ ′
∫
dΓ ′

1

{
w
(
ΓΓ1 |Γ ′Γ ′

1

)
f(r, Γ ′; t) f(r, Γ ′

1; t)

− w
(
Γ ′Γ ′

1 |ΓΓ1

)
f(r, Γ ; t) f(r, Γ1; t)

}
.

(8.42)

8.3.5 Detailed balance

Classical mechanics places some restrictions on the form of the kernel w
(
ΓΓ1 |Γ ′Γ ′

1

)
. In particular, if Γ T =

(−p,−L) denotes the kinematic variables under time reversal, then

w
(
Γ ′Γ ′

1 |ΓΓ1

)
= w

(
Γ TΓ T

1 |Γ ′TΓ ′
1

T
)
. (8.43)
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This is because the time reverse of the process |ΓΓ1〉 → |Γ ′Γ ′
1〉 is |Γ ′TΓ ′

1
T〉 → |Γ TΓ T

1 〉.

In equilibrium, we must have

w
(
Γ ′Γ ′

1 |ΓΓ1

)
f0(Γ ) f0(Γ1) d

4Γ = w
(
Γ TΓ T

1 |Γ ′TΓ ′
1

T
)
f0(Γ ′T ) f0(Γ ′

1
T ) d4Γ T (8.44)

where
d4Γ ≡ dΓ dΓ1 dΓ

′dΓ ′
1 , d4Γ T ≡ dΓ T dΓ T

1 dΓ
′TdΓ ′

1
T . (8.45)

Since dΓ = dΓ T etc., we may cancel the differentials above, and after invoking eqn. 8.43 and suppressing the
common r label, we find

f0(Γ ) f0(Γ1) = f0(Γ ′T ) f0(Γ ′
1

T ) . (8.46)

This is the condition of detailed balance. For the Boltzmann distribution, we have

f0(Γ ) = Ae−ε/kBT , (8.47)

where A is a constant and where ε = ε(Γ ) is the kinetic energy, e.g. ε(Γ ) = p2/2m in the case of point particles.
Note that ε(Γ T ) = ε(Γ ). Detailed balance is satisfied because the kinematics of the collision requires energy
conservation:

ε+ ε1 = ε′ + ε′1 . (8.48)

Since momentum is also kinematically conserved, i.e.

p + p1 = p′ + p′
1 , (8.49)

any distribution of the form

f0(Γ ) = Ae−(ε−p·V )/kBT (8.50)

also satisfies detailed balance, for any velocity parameter V . This distribution is appropriate for gases which are
flowing with average particle V .

In addition to time-reversal, parity is also a symmetry of the microscopic mechanical laws. Under the parity
operation P , we have r → −r and p → −p. Note that a pseudovector such as L = r × p is unchanged under
P . Thus, Γ P = (−p,L). Under the combined operation of C = PT , we have ΓC = (p,−L). If the microscopic
Hamiltonian is invariant under C, then we must have

w
(
Γ ′Γ ′

1 |ΓΓ1

)
= w

(
ΓCΓC

1 |Γ ′CΓ ′
1

C
)
. (8.51)

For point particles, invariance under T and P then means

w(p′,p′
1 |p,p1) = w(p,p1 |p′,p′

1) , (8.52)

and therefore the collision integral takes the simplified form,

Df(p)

Dt
=

(
∂f

∂t

)

coll

=

∫
d3p1

∫
d3p′
∫
d3p′1 w(p′,p′

1 |p,p1)
{
f(p′) f(p′

1) − f(p) f(p1)
}
,

(8.53)

where we have suppressed both r and t variables.

The most general statement of detailed balance is

f0(Γ ′) f0(Γ ′
1)

f0(Γ ) f0(Γ1)
=
w
(
Γ ′Γ ′

1 |ΓΓ1

)

w
(
ΓΓ1 |Γ ′Γ ′

1

) . (8.54)

Under this condition, the collision term vanishes for f = f0, which is the equilibrium distribution.
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8.3.6 Kinematics and cross section

We can rewrite eqn. 8.53 in the form

Df(p)

Dt
=

∫
d3p1

∫
dΩ |v − v1|

∂σ

∂Ω

{
f(p′) f(p′

1) − f(p) f(p1)
}
, (8.55)

where ∂σ
∂Ω is the differential scattering cross section. If we recast the scattering problem in terms of center-of-mass

and relative coordinates, we conclude that the total momentum is conserved by the collision, and furthermore that
the energy in the CM frame is conserved, which means that the magnitude of the relative momentum is conserved.

Thus, we may write p′ − p′
1 = |p − p1| Ω̂, where Ω̂ is a unit vector. Then p′ and p′

1 are determined to be

p′ = 1
2

(
p + p1 + |p − p1| Ω̂

)

p′
1 = 1

2

(
p + p1 − |p − p1| Ω̂

)
.

(8.56)

8.3.7 H-theorem

Let’s consider the Boltzmann equation with two particle collisions. We define the local (i.e. r-dependent) quantity

ρϕ(r, t) ≡
∫
dΓ ϕ(Γ, f) f(Γ, r, t) . (8.57)

At this point, ϕ(Γ, f) is arbitrary. Note that the ϕ(Γ, f) factor has r and t dependence through its dependence on
f , which itself is a function of r, Γ , and t. We now compute

∂ρϕ

∂t
=

∫
dΓ

∂(ϕf)

∂t
=

∫
dΓ

∂(ϕf)

∂f

∂f

∂t

= −
∫
dΓ u · ∇(ϕf) −

∫
dΓ

∂(ϕf)

∂f

(
∂f

∂t

)

coll

= −
∮
dΣ n̂ · (uϕf) −

∫
dΓ

∂(ϕf)

∂f

(
∂f

∂t

)

coll

.

(8.58)

The first term on the last line follows from the divergence theorem, and vanishes if we assume f = 0 for infinite
values of the kinematic variables, which is the only physical possibility. Thus, the rate of change of ρϕ is entirely
due to the collision term. Thus,

∂ρϕ

∂t
=

∫
dΓ

∫
dΓ1

∫
dΓ ′
∫
dΓ ′

1

{
w
(
Γ ′Γ ′

1 |ΓΓ1

)
ff1 χ− w

(
ΓΓ1 |Γ ′Γ ′

1

)
f ′f ′

1 χ
}

=

∫
dΓ

∫
dΓ1

∫
dΓ ′
∫
dΓ ′

1 w
(
Γ ′Γ ′

1 |ΓΓ1

)
ff1 (χ− χ′) ,

(8.59)

where f ≡ f(Γ ), f ′ ≡ f(Γ ′), f1 ≡ f(Γ1), f
′
1 ≡ f(Γ ′

1), χ = χ(Γ ), with

χ =
∂(ϕf)

∂f
= ϕ+ f

∂ϕ

∂f
. (8.60)

We now invoke the symmetry
w
(
Γ ′Γ ′

1 |ΓΓ1

)
= w

(
Γ ′

1 Γ
′ |Γ1 Γ

)
, (8.61)

which allows us to write

∂ρϕ

∂t
= 1

2

∫
dΓ

∫
dΓ1

∫
dΓ ′
∫
dΓ ′

1 w
(
Γ ′Γ ′

1 |ΓΓ1

)
ff1 (χ+ χ1 − χ′ − χ′

1) . (8.62)
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This shows that ρϕ is preserved by the collision term if χ(Γ ) is a collisional invariant.

Now let us consider ϕ(f) = ln f . We define h ≡ ρ
∣∣
ϕ=ln f

. We then have

∂h

∂t
= − 1

2

∫
dΓ

∫
dΓ1

∫
dΓ ′
∫
dΓ ′

1 w f
′f ′

1 · x lnx , (8.63)

where w ≡ w
(
Γ ′Γ ′

1 |ΓΓ1

)
and x ≡ ff1/f

′f ′
1. We next invoke the result

∫
dΓ ′
∫
dΓ ′

1 w
(
Γ ′Γ ′

1 |ΓΓ1

)
=

∫
dΓ ′
∫
dΓ ′

1 w
(
ΓΓ1 |Γ ′Γ ′

1

)
(8.64)

which is a statement of unitarity of the scattering matrix3. Multiplying both sides by f(Γ ) f(Γ1), then integrating
over Γ and Γ1, and finally changing variables (Γ, Γ1) ↔ (Γ ′, Γ ′

1), we find

0 =

∫
dΓ

∫
dΓ1

∫
dΓ ′
∫
dΓ ′

1 w
(
ff1 − f ′f ′

1

)
=

∫
dΓ

∫
dΓ1

∫
dΓ ′
∫
dΓ ′

1 w f
′f ′

1 (x − 1) . (8.65)

Multiplying this result by 1
2 and adding it to the previous equation for ḣ, we arrive at our final result,

∂h

∂t
= − 1

2

∫
dΓ

∫
dΓ1

∫
dΓ ′
∫
dΓ ′

1 w f
′f ′

1 (x ln x− x+ 1) . (8.66)

Note that w, f ′, and f ′
1 are all nonnegative. It is then easy to prove that the function g(x) = x ln x − x + 1 is

nonnegative for all positive x values4, which therefore entails the important result

∂h(r, t)

∂t
≤ 0 . (8.67)

Boltzmann’s H function is the space integral of the h density: H =
∫
d3r h.

Thus, everywhere in space, the function h(r, t) is monotonically decreasing or constant, due to collisions. In

equilibrium, ḣ = 0 everywhere, which requires x = 1, i.e.

f0(Γ ) f0(Γ1) = f0(Γ ′) f0(Γ ′
1) , (8.68)

or, taking the logarithm,

ln f0(Γ ) + ln f0(Γ1) = ln f0(Γ ′) + ln f0(Γ ′
1) . (8.69)

But this means that ln f0 is itself a collisional invariant, and if 1, p, and ε are the only collisional invariants, then
ln f0 must be expressible in terms of them. Thus,

ln f0 =
µ

k
B
T

+
V ·p
k

B
T

− ε

k
B
T
, (8.70)

where µ, V , and T are constants which parameterize the equilibrium distribution f0(p), corresponding to the
chemical potential, flow velocity, and temperature, respectively.

3See Lifshitz and Pitaevskii, Physical Kinetics, §2.
4The function g(x) = x ln x − x + 1 satisfies g′(x) = ln x, hence g′(x) < 0 on the interval x ∈ [0, 1) and g′(x) > 0 on x ∈ (1,∞]. Thus,

g(x) monotonically decreases from g(0) = 1 to g(1) = 0, and then monotonically increases to g(∞) = ∞, never becoming negative.
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8.4 Weakly Inhomogeneous Gas

Consider a gas which is only weakly out of equilibrium. We follow the treatment in Lifshitz and Pitaevskii, §6. As
the gas is only slightly out of equilibrium, we seek a solution to the Boltzmann equation of the form f = f0 + δf ,
where f0 is describes a local equilibrium. Recall that such a distribution function is annihilated by the collision
term in the Boltzmann equation but not by the streaming term, hence a correction δf must be added in order to
obtain a solution.

The most general form of local equilibrium is described by the distribution

f0(r, Γ ) = C exp

(
µ− ε(Γ ) + V · p

kBT

)
, (8.71)

where µ = µ(r, t), T = T (r, t), and V = V (r, t) vary in both space and time. Note that

df0 =

(
dµ+ p · dV + (ε− µ− V · p)

dT

T
− dε

)(
− ∂f0

∂ε

)

=

(
1

n
dp+ p · dV + (ε− h)

dT

T
− dε

)(
− ∂f0

∂ε

) (8.72)

where we have assumed V = 0 on average, and used

dµ =

(
∂µ

∂T

)

p

dT +

(
∂µ

∂p

)

T

dp

= −s dT +
1

n
dp ,

(8.73)

where s is the entropy per particle and n is the number density. We have further written h = µ+ Ts, which is the
enthalpy per particle. Here, cp is the heat capacity per particle at constant pressure5. Finally, note that when f0 is
the Maxwell-Boltzmann distribution, we have

−∂f
0

∂ε
=

f0

kBT
. (8.74)

The Boltzmann equation is written

(
∂

∂t
+

p

m
· ∂
∂r

+ F · ∂
∂p

)(
f0 + δf

)
=

(
∂f

∂t

)

coll

. (8.75)

The RHS of this equation must be of order δf because the local equilibrium distribution f0 is annihilated by the
collision integral. We therefore wish to evaluate one of the contributions to the LHS of this equation,

∂f0

∂t
+

p

m
· ∂f

0

∂r
+ F · ∂f

0

∂p
=

(
− ∂f0

∂ε

){
1

n

∂p

∂t
+
ε− h

T

∂T

∂t
+mv ·

[
(v ·∇)V

]

+ v ·
(
m
∂V

∂t
+

1

n
∇p

)
+
ε− h

T
v · ∇T − F · v

}
.

(8.76)

5In the chapter on thermodynamics, we adopted a slightly different definition of cp as the heat capacity per mole. In this chapter cp is the
heat capacity per particle.
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To simplify this, first note that Newton’s laws applied to an ideal fluid give ρV̇ = −∇p, where ρ = mn is the mass
density. Corrections to this result, e.g. viscosity and nonlinearity in V , are of higher order.

Next, continuity for particle number means ṅ + ∇ · (nV ) = 0. We assume V is zero on average and that all
derivatives are small, hence ∇·(nV ) = V ·∇n+ n∇·V ≈ n∇·V . Thus,

∂ lnn

∂t
=
∂ ln p

∂t
− ∂ lnT

∂t
= −∇·V , (8.77)

where we have invoked the ideal gas law n = p/k
B
T above.

Next, we invoke conservation of entropy. If s is the entropy per particle, then ns is the entropy per unit volume,
in which case we have the continuity equation

∂(ns)

∂t
+ ∇ · (nsV ) = n

(
∂s

∂t
+ V ·∇s

)
+ s

(
∂n

∂t
+ ∇ · (nV )

)
= 0 . (8.78)

The second bracketed term on the RHS vanishes because of particle continuity, leaving us with ṡ+ V ·∇s ≈ ṡ = 0
(since V = 0 on average, and any gradient is first order in smallness). Now thermodynamics says

ds =

(
∂s

∂T

)

p

dT +

(
∂s

∂p

)

T

dp

=
cp
T
dT − k

B

p
dp ,

(8.79)

since T
(

∂s
∂T

)
p

= cp and
(

∂s
∂p

)
T

=
(

∂v
∂T

)
p
, where v = V/N . Thus,

cp
kB

∂ lnT

∂t
− ∂ ln p

∂t
= 0 . (8.80)

We now have in eqns. 8.77 and 8.80 two equations in the two unknowns ∂ ln T
∂t and ∂ ln p

∂t , yielding

∂ lnT

∂t
= − kB

cV
∇·V (8.81)

∂ ln p

∂t
= − cp

cV
∇·V . (8.82)

Thus eqn. 8.76 becomes

∂f0

∂t
+

p

m
· ∂f

0

∂r
+ F · ∂f

0

∂p
=

(
− ∂f0

∂ε

){
ε(Γ ) − h

T
v · ∇T +mvαvβ Qαβ

+
h− Tcp − ε(Γ )

cV /kB

∇·V − F · v
}
,

(8.83)

where

Qαβ =
1

2

(
∂Vα

∂xβ

+
∂Vβ

∂xα

)
. (8.84)

Therefore, the Boltzmann equation takes the form

{
ε(Γ ) − h

T
v · ∇T +mvαvβ Qαβ − ε(Γ ) − h+ Tcp

cV /kB

∇·V − F · v
}

f0

kBT
+
∂ δf

∂t
=

(
∂f

∂t

)

coll

. (8.85)
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Notice we have dropped the terms v · ∂ δf
∂r and F · ∂ δf

∂p , since δf must already be first order in smallness, and both

the ∂
∂r operator as well as F add a second order of smallness, which is negligible. Typically ∂ δf

∂t is nonzero if
the applied force F (t) is time-dependent. We use the convention of summing over repeated indices. Note that
δαβ Qαβ = Qαα = ∇·V . For ideal gases in which only translational and rotational degrees of freedom are excited,
h = cpT .

8.5 Relaxation Time Approximation

8.5.1 Approximation of collision integral

We now consider a very simple model of the collision integral,

(
∂f

∂t

)

coll

= − f − f0

τ
= −δf

τ
. (8.86)

This model is known as the relaxation time approximation. Here, f0 = f0(r,p, t) is a distribution function which
describes a local equilibrium at each position r and time t. The quantity τ is the relaxation time, which can in
principle be momentum-dependent, but which we shall first consider to be constant. In the absence of streaming
terms, we have

∂ δf

∂t
= −δf

τ
=⇒ δf(r,p, t) = δf(r,p, 0) e−t/τ . (8.87)

The distribution f then relaxes to the equilibrium distribution f0 on a time scale τ . We note that this approximation
is obviously flawed in that all quantities – even the collisional invariants – relax to their equilibrium values on the
scale τ . In the Appendix, we consider a model for the collision integral in which the collisional invariants are all
preserved, but everything else relaxes to local equilibrium at a single rate.

8.5.2 Computation of the scattering time

Consider two particles with velocities v and v′. The average of their relative speed is

〈 |v − v′| 〉 =

∫
d3v

∫
d3v′ P (v)P (v′) |v − v′| , (8.88)

where P (v) is the Maxwell velocity distribution,

P (v) =

(
m

2πk
B
T

)3/2

exp

(
− mv2

2k
B
T

)
, (8.89)

which follows from the Boltzmann form of the equilibrium distribution f0(p). It is left as an exercise for the
student to verify that

v̄rel ≡ 〈 |v − v′| 〉 =
4√
π

(
k

B
T

m

)1/2

. (8.90)

Note that v̄rel =
√

2 v̄, where v̄ is the average particle speed. Let σ be the total scattering cross section, which for
hard spheres is σ = πd2, where d is the hard sphere diameter. Then the rate at which particles scatter is

1

τ
= n v̄rel σ . (8.91)
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Figure 8.3: Graphic representation of the equation nσ v̄rel τ = 1, which yields the scattering time τ in terms of the
number density n, average particle pair relative velocity v̄rel, and two-particle total scattering cross section σ. The
equation says that on average there must be one particle within the tube.

The particle mean free path is simply

ℓ = v̄ τ =
1√

2nσ
. (8.92)

While the scattering length is not temperature-dependent within this formalism, the scattering time is T -dependent,
with

τ(T ) =
1

n v̄rel σ
=

√
π

4nσ

(
m

kBT

)1/2

. (8.93)

As T → 0, the collision time diverges as τ ∝ T−1/2, because the particles on average move more slowly at lower
temperatures. The mean free path, however, is independent of T , and is given by ℓ = 1/

√
2nσ.

8.5.3 Thermal conductivity

We consider a system with a temperature gradient ∇T and seek a steady state (i.e. time-independent) solution
to the Boltzmann equation. We assume Fα = Qαβ = 0. Appealing to eqn. 8.85, and using the relaxation time
approximation for the collision integral, we have

δf = −
τ(ε− cp T )

k
B
T 2

(v · ∇T ) f0 . (8.94)

We are now ready to compute the energy and particle currents. In order to compute the local density of any quantity
A(r,p), we multiply by the distribution f(r,p) and integrate over momentum:

ρ
A

(r, t) =

∫
d3pA(r,p) f(r,p, t) , (8.95)

For the energy (thermal) current, we let A = ε vα = ε pα/m, in which case ρ
A

= jα. Note that
∫
d3pp f0 = 0 since f0

is isotropic in p even when µ and T depend on r. Thus, only δf enters into the calculation of the various currents.
Thus, the energy (thermal) current is

jα
ε (r) =

∫
d3p ε vα δf

= − nτ

k
B
T 2

〈
vαvβ ε (ε− cp T )

〉 ∂T
∂xβ

,

(8.96)

where the repeated index β is summed over, and where momentum averages are defined relative to the equilib-
rium distribution, i.e.

〈φ(p) 〉 =

∫
d3p φ(p) f0(p)

/∫
d3p f0(p) =

∫
d3v P (v)φ(mv) . (8.97)
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In this context, it is useful to point out the identity

d3p f0(p) = n d3v P (v) , (8.98)

where

P (v) =

(
m

2πkBT

)3/2

e−m(v−V )2/2kBT (8.99)

is the Maxwell velocity distribution.

Note that if φ = φ(ε) is a function of the energy, and if V = 0, then

d3p f0(p) = n d3v P (v) = n P̃ (ε) dε , (8.100)

where
P̃ (ε) = 2√

π
(k

B
T )−3/2 ε1/2 e−ε/kBT , (8.101)

is the Maxwellian distribution of single particle energies. This distribution is normalized with
∞∫
0

dε P̃ (ε) = 1.

Averages with respect to this distribution are given by

〈φ(ε) 〉 =

∞∫

0

dε φ(ε) P̃ (ε) = 2√
π
(kBT )−3/2

∞∫

0

dε ε1/2 φ(ε) e−ε/kBT . (8.102)

If φ(ε) is homogeneous, then for any α we have

〈 εα 〉 = 2√
π
Γ
(
α+ 3

2

)
(k

B
T )α . (8.103)

Due to spatial isotropy, it is clear that we can replace

vα vβ → 1
3v2 δαβ =

2ε

3m
δαβ (8.104)

in eqn. 8.96. We then have jε = −κ∇T , with

κ =
2nτ

3mk
B
T 2

〈 ε2
(
ε− cp T

)
〉 =

5nτk2
B
T

2m
= π

8nℓv̄ cp , (8.105)

where we have used cp = 5
2kB

and v̄2 = 8kBT
πm . The quantity κ is called the thermal conductivity. Note that κ ∝ T 1/2.

8.5.4 Viscosity

Consider the situation depicted in fig. 8.4. A fluid filling the space between two large flat plates at z = 0 and
z = d is set in motion by a force F = F x̂ applied to the upper plate; the lower plate is fixed. It is assumed that the
fluid’s velocity locally matches that of the plates. Fluid particles at the top have an average x-component of their
momentum 〈px〉 = mV . As these particles move downward toward lower z values, they bring their x-momenta
with them. Therefore there is a downward (−ẑ-directed) flow of 〈px〉. Since x-momentum is constantly being
drawn away from z = d plane, this means that there is a −x-directed viscous drag on the upper plate. The viscous
drag force per unit area is given by Fdrag/A = −ηV/d, where V/d = ∂Vx/∂z is the velocity gradient and η is the
shear viscosity. In steady state, the applied force balances the drag force, i.e. F + Fdrag = 0. Clearly in the steady

state the net momentum density of the fluid does not change, and is given by 1
2ρV x̂, where ρ is the fluid mass

density. The momentum per unit time injected into the fluid by the upper plate at z = d is then extracted by the
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Figure 8.4: Gedankenexperiment to measure shear viscosity η in a fluid. The lower plate is fixed. The viscous drag
force per unit area on the upper plate is Fdrag/A = −ηV/d. This must be balanced by an applied force F .

lower plate at z = 0. The momentum flux density Πxz = n 〈 px vz 〉 is the drag force on the upper surface per unit

area: Πxz = −η ∂Vx

∂z . The units of viscosity are [η] = M/LT .

We now provide some formal definitions of viscosity. As we shall see presently, there is in fact a second type of
viscosity, called second viscosity or bulk viscosity, which is measurable although not by the type of experiment
depicted in fig. 8.4.

The momentum flux tensor Παβ = n 〈 pα vβ 〉 is defined to be the current of momentum component pα in the
direction of increasing xβ . For a gas in motion with average velocity V , we have

Παβ = nm 〈 (Vα + v′α)(Vβ + v′β) 〉
= nmVαVβ + nm 〈 v′αv′β 〉
= nmVαVβ + 1

3nm 〈v′2 〉 δαβ

= ρ VαVβ + p δαβ ,

(8.106)

where v′ is the particle velocity in a frame moving with velocity V , and where we have invoked the ideal gas law
p = nk

B
T . The mass density is ρ = nm.

When V is spatially varying,
Παβ = p δαβ + ρ VαVβ − σ̃αβ , (8.107)

where σ̃αβ is the viscosity stress tensor. Any symmetric tensor, such as σ̃αβ , can be decomposed into a sum of
(i) a traceless component, and (ii) a component proportional to the identity matrix. Since σ̃αβ should be, to first
order, linear in the spatial derivatives of the components of the velocity field V , there is a unique two-parameter
decomposition:

σ̃αβ = η

(
∂Vα

∂xβ

+
∂Vβ

∂xα

− 2
3 ∇·V δαβ

)
+ ζ∇·V δαβ

= 2η
(
Qαβ − 1

3 Tr (Q) δαβ

)
+ ζ Tr (Q) δαβ .

(8.108)

The coefficient of the traceless component is η, known as the shear viscosity. The coefficient of the component
proportional to the identity is ζ, known as the bulk viscosity. The full stress tensor σαβ contains a contribution from
the pressure:

σαβ = −p δαβ + σ̃αβ . (8.109)

The differential force dFα that a fluid exerts on on a surface element n̂ dA is

dFα = −σαβ nβ dA , (8.110)
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Figure 8.5: Left: thermal conductivity (λ in figure) of Ar between T = 800 K and T = 2600 K. The best fit to a
single power law λ = aT b results in b = 0.651. Source: G. S. Springer and E. W. Wingeier, J. Chem Phys. 59, 1747
(1972). Right: log-log plot of shear viscosity (µ in figure) of He between T ≈ 15 K and T ≈ 1000 K. The red line
has slope 1

2 . The slope of the data is approximately 0.633. Source: J. Kestin and W. Leidenfrost, Physica 25, 537
(1959).

where we are using the Einstein summation convention and summing over the repeated index β. We will now
compute the shear viscosity η using the Boltzmann equation in the relaxation time approximation.

Appealing again to eqn. 8.85, with F = 0 and h = cpT , we find

δf = − τ

k
B
T

{
mvαvβ Qαβ +

ε− cp T

T
v · ∇T − ε

cV /kB

∇·V
}
f0 . (8.111)

We assume ∇T = ∇·V = 0, and we compute the momentum flux:

Πxz = n

∫
d3p pxvz δf

= −nm
2τ

k
B
T

Qαβ 〈 vx vz vα vβ 〉

= − nτ

k
B
T

(
∂Vx

∂z
+
∂Vz

∂x

)
〈mv2

x ·mv2
z 〉

= −nτkBT

(
∂Vz

∂x
+
∂Vx

∂z

)
.

(8.112)

Thus, if Vx = Vx(z), we have

Πxz = −nτkBT
∂Vx

∂z
(8.113)

from which we read off the viscosity,
η = nk

B
Tτ = π

8nmℓv̄ . (8.114)

Note that η(T ) ∝ T 1/2.

How well do these predictions hold up? In fig. 8.5, we plot data for the thermal conductivity of argon and
the shear viscosity of helium. Both show a clear sublinear behavior as a function of temperature, but the slope
d lnκ/dT is approximately 0.65 and d ln η/dT is approximately 0.63. Clearly the simple model is not even getting
the functional dependence on T right, let alone its coefficient. Still, our crude theory is at least qualitatively correct.
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Why do both κ(T ) as well as η(T ) decrease at low temperatures? The reason is that the heat current which flows
in response to ∇T as well as the momentum current which flows in response to ∂Vx/∂z are due to the presence of
collisions, which result in momentum and energy transfer between particles. This is true even when total energy
and momentum are conserved, which they are not in the relaxation time approximation. Intuitively, we might
think that the viscosity should increase as the temperature is lowered, since common experience tells us that fluids
‘gum up’ as they get colder – think of honey as an extreme example. But of course honey is nothing like an
ideal gas, and the physics behind the crystallization or glass transition which occurs in real fluids when they get
sufficiently cold is completely absent from our approach. In our calculation, viscosity results from collisions, and
with no collisions there is no momentum transfer and hence no viscosity. If, for example, the gas particles were
to simply pass through each other, as though they were ghosts, then there would be no opposition to maintaining
an arbitrary velocity gradient.

8.5.5 Oscillating external force

Suppose a uniform oscillating external force Fext(t) = F e−iωt is applied. For a system of charged particles, this
force would arise from an external electric field Fext = qE e−iωt, where q is the charge of each particle. We’ll
assume ∇T = 0. The Boltzmann equation is then written

∂f

∂t
+

p

m
· ∂f
∂r

+ F e−iωt · ∂f
∂p

= −f − f0

τ
. (8.115)

We again write f = f0 + δf , and we assume δf is spatially constant. Thus,

∂ δf

∂t
+ F e−iωt · v ∂f

0

∂ε
= −δf

τ
. (8.116)

If we assume δf(t) = δf(ω) e−iωt then the above differential equation is converted to an algebraic equation, with
solution

δf(t) = − τ e−iωt

1 − iωτ

∂f0

∂ε
F · v . (8.117)

We now compute the particle current:

jα(r, t) =

∫
d3p v δf

=
τ e−iωt

1 − iωτ
·
Fβ

kBT

∫
d3p f0(p) vα vβ

=
τ e−iωt

1 − iωτ
· nFα

3k
B
T

∫
d3v P (v)v2

=
nτ

m
· Fα e

−iωt

1 − iωτ
.

(8.118)

If the particles are electrons, with charge q = −e, then the electrical current is (−e) times the particle current. We
then obtain

j(elec)

α (t) =
ne2τ

m
· Eα e

−iωt

1 − iωτ
≡ σαβ(ω) Eβ e

−iωt , (8.119)

where

σαβ(ω) =
ne2τ

m
· 1

1 − iωτ
δαβ (8.120)

is the frequency-dependent electrical conductivity tensor. Of course for fermions such as electrons, we should be
using the Fermi distribution in place of the Maxwell-Boltzmann distribution for f0(p). This affects the relation
between n and µ only, and the final result for the conductivity tensor σαβ(ω) is unchanged.
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8.5.6 Quick and Dirty Treatment of Transport

Suppose we have some averaged intensive quantity φ which is spatially dependent through T (r) or µ(r) or V (r).
For simplicity we will write φ = φ(z). We wish to compute the current of φ across some surface whose equation
is dz = 0. If the mean free path is ℓ, then the value of φ for particles crossing this surface in the +ẑ direction is
φ(z − ℓ cos θ), where θ is the angle the particle’s velocity makes with respect to ẑ, i.e. cos θ = vz/v. We perform the
same analysis for particles moving in the −ẑ direction, for which φ = φ(z + ℓ cos θ). The current of φ through this
surface is then

jφ = nẑ

∫

vz>0

d3v P (v) vz φ(z − ℓ cos θ) + nẑ

∫

vz<0

d3v P (v) vz φ(z + ℓ cos θ)

= −nℓ ∂φ
∂z

ẑ

∫
d3v P (v)

v2
z

v
= − 1

3nv̄ℓ
∂φ

∂z
ẑ ,

(8.121)

where v̄ =
√

8kBT
πm is the average particle speed. If the z-dependence of φ comes through the dependence of φ on

the local temperature T , then we have

jφ = − 1
3 nℓv̄

∂φ

∂T
∇T ≡ −K∇T , (8.122)

where

K = 1
3nℓv̄

∂φ

∂T
(8.123)

is the transport coefficient. If φ = 〈ε〉, then ∂φ
∂T = cp, where cp is the heat capacity per particle at constant pressure.

We then find jε = −κ∇T with thermal conductivity

κ = 1
3nℓv̄ cp . (8.124)

Our Boltzmann equation calculation yielded the same result, but with a prefactor of π
8 instead of 1

3 .

We can make a similar argument for the viscosity. In this case φ = 〈px〉 is spatially varying through its dependence
on the flow velocity V (r). Clearly ∂φ/∂Vx = m, hence

jz
px

= Πxz = − 1
3nmℓv̄

∂Vx

∂z
, (8.125)

from which we identify the viscosity, η = 1
3nmℓv̄. Once again, this agrees in its functional dependences with the

Boltzmann equation calculation in the relaxation time approximation. Only the coefficients differ. The ratio of the
coefficients is KQDC/KBRT = 8

3π = 0.849 in both cases6.

8.5.7 Thermal diffusivity, kinematic viscosity, and Prandtl number

Suppose, under conditions of constant pressure, we add heat q per unit volume to an ideal gas. We know from
thermodynamics that its temperature will then increase by an amount ∆T = q/ncp. If a heat current jq flows, then
the continuity equation for energy flow requires

ncp
∂T

∂t
+ ∇ · jq = 0 . (8.126)

6Here we abbreviate QDC for ‘quick and dirty calculation’ and BRT for ‘Boltzmann equation in the relaxation time approximation’.
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Gas η (µPa · s) κ (mW/m · K) cp/kB
Pr

He 19.5 149 2.50 0.682
Ar 22.3 17.4 2.50 0.666
Xe 22.7 5.46 2.50 0.659
H2 8.67 179 3.47 0.693
N2 17.6 25.5 3.53 0.721
O2 20.3 26.0 3.50 0.711

CH4 11.2 33.5 4.29 0.74
CO2 14.8 18.1 4.47 0.71
NH3 10.1 24.6 4.50 0.90

Table 8.1: Viscosities, thermal conductivities, and Prandtl numbers for some common gases at T = 293 K and
p = 1 atm. (Source: Table 1.1 of Smith and Jensen, with data for triatomic gases added.)

In a system where there is no net particle current, the heat current jq is the same as the energy current jε, and
since jε = −κ∇T , we obtain a diffusion equation for temperature,

∂T

∂t
=

κ

ncp
∇2T . (8.127)

The combination
a ≡ κ

ncp
(8.128)

is known as the thermal diffusivity. Our Boltzmann equation calculation in the relaxation time approximation
yielded the result κ = nk

B
Tτcp/m. Thus, we find a = k

B
Tτ/m via this method. Note that the dimensions of a are

the same as for any diffusion constant D, namely [a] = L2/T .

Another quantity with dimensions of L2/T is the kinematic viscosity, ν = η/ρ, where ρ = nm is the mass density.
We found η = nkBTτ from the relaxation time approximation calculation, hence ν = kBTτ/m. The ratio ν/a,
called the Prandtl number, Pr = ηcp/mκ, is dimensionless. According to our calculations, Pr = 1. According to

table 8.1, most monatomic gases have Pr ≈ 2
3 .

8.6 Diffusion and the Lorentz model

8.6.1 Failure of the relaxation time approximation

As we remarked above, the relaxation time approximation fails to conserve any of the collisional invariants. It is
therefore unsuitable for describing hydrodynamic phenomena such as diffusion. To see this, let f(r,v, t) be the
distribution function, here written in terms of position, velocity, and time rather than position, momentum, and
time as befor7. In the absence of external forces, the Boltzmann equation in the relaxation time approximation is

∂f

∂t
+ v · ∂f

∂r
= −f − f0

τ
. (8.129)

The density of particles in velocity space is given by

ñ(v, t) =

∫
d3r f(r,v, t) . (8.130)

7The difference is trivial, since p = mv.
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In equilibrium, this is the Maxwell distribution times the total number of particles: ñ0(v) = NP
M
(v). The number

of particles as a function of time, N(t) =
∫
d3v ñ(v, t), should be a constant.

Integrating the Boltzmann equation one has

∂ñ

∂t
= − ñ− ñ0

τ
. (8.131)

Thus, with δñ(v, t) = ñ(v, t) − ñ0(v), we have

δñ(v, t) = δñ(v, 0) e−t/τ . (8.132)

Thus, ñ(v, t) decays exponentially to zero with time constant τ , from which it follows that the total particle number
exponentially relaxes to N0. This is physically incorrect; local density perturbations can’t just vanish. Rather, they
diffuse.

8.6.2 Modified Boltzmann equation and its solution

To remedy this unphysical aspect, consider the modified Boltzmann equation,

∂f

∂t
+ v · ∂f

∂r
=

1

τ

[
− f +

∫
dv̂

4π
f

]
≡ 1

τ

(
P − 1

)
f , (8.133)

where P is a projector onto a space of isotropic functions of v: PF =
∫

dv̂
4π F (v) for any function F (v). Note that

PF is a function of the speed v = |v|. For this modified equation, known as the Lorentz model, one finds ∂tñ = 0.

The model in eqn. 8.133 is known as the Lorentz model8. To solve it, we consider the Laplace transform,

f̂(k,v, s) =

∞∫

0

dt e−st

∫
d3r e−ik·r f(r,v, t) . (8.134)

Taking the Laplace transform of eqn. 8.133, we find

(
s+ iv · k + τ−1

)
f̂(k,v, s) = τ−1

P f̂(k,v, s) + f(k,v, t = 0) . (8.135)

We now solve for P f̂(k,v, s):

f̂(k,v, s) =
τ−1

s+ iv · k + τ−1
P f̂(k,v, s) +

f(k,v, t = 0)

s+ iv · k + τ−1
, (8.136)

which entails

P f̂(k,v, s) =

[∫
dv̂

4π

τ−1

s+ iv · k + τ−1

]
P f̂(k,v, s) +

∫
dv̂

4π

f(k,v, t = 0)

s+ iv · k + τ−1
. (8.137)

Now we have

∫
dv̂

4π

τ−1

s+ iv · k + τ−1
=

1∫

−1

dx
τ−1

s+ ivkx+ τ−1

=
1

vk
tan−1

(
vkτ

1 + τs

)
.

(8.138)

8See the excellent discussion in the book by Krapivsky, Redner, and Ben-Naim, cited in §8.1.
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Thus,

P f(k,v, s) =

[
1 − 1

vkτ
tan−1

(
vkτ

1 + τs

)]−1∫
dv̂

4π

f(k,v, t = 0)

s+ iv · k + τ−1
. (8.139)

We now have the solution to Lorentz’s modified Boltzmann equation:

f̂(k,v, s) =
τ−1

s+ iv · k + τ−1

[
1 − 1

vkτ
tan−1

(
vkτ

1 + τs

)]−1∫
dv̂

4π

f(k,v, t = 0)

s+ iv · k + τ−1

+
f(k,v, t = 0)

s+ iv · k + τ−1
.

(8.140)

Let us assume an initial distribution which is perfectly localized in both r and v:

f(r,v, t = 0) = δ(v − v0) . (8.141)

For these initial conditions, we find

∫
dv̂

4π

f(k,v, t = 0)

s+ iv · k + τ−1
=

1

s+ iv0 · k + τ−1
· δ(v − v0)

4πv2
0

. (8.142)

We further have that

1 − 1

vkτ
tan−1

(
vkτ

1 + τs

)
= sτ + 1

3k
2v2τ2 + . . . , (8.143)

and therefore

f̂(k,v, s) =
τ−1

s+ iv · k + τ−1
· τ−1

s+ iv0 · k + τ−1
· 1

s+ 1
3v

2
0 k

2 τ + . . .
· δ(v − v0)

4πv2
0

+
δ(v − v0)

s+ iv0 · k + τ−1
.

(8.144)

We are interested in the long time limit t≫ τ for f(r,v, t). This is dominated by s ∼ t−1, and we assume that τ−1

is dominant over s and iv · k. We then have

f̂(k,v, s) ≈ 1

s+ 1
3v

2
0 k

2 τ
· δ(v − v0)

4πv2
0

. (8.145)

Performing the inverse Laplace and Fourier transforms, we obtain

f(r,v, t) = (4πDt)−3/2 e−r2/4Dt · δ(v − v0)

4πv2
0

, (8.146)

where the diffusion constant is
D = 1

3v
2
0 τ . (8.147)

The units are [D] = L2/T . Integrating over velocities, we have the density

n(r, t) =

∫
d3v f(r,v, t) = (4πDt)−3/2 e−r2/4Dt . (8.148)

Note that ∫
d3r n(r, t) = 1 (8.149)

for all time. Total particle number is conserved!



24 CHAPTER 8. NONEQUILIBRIUM PHENOMENA

8.7 Linearized Boltzmann Equation

8.7.1 Linearizing the collision integral

We now return to the classical Boltzmann equation and consider a more formal treatment of the collision term in
the linear approximation. We will assume time-reversal symmetry, in which case

(
∂f

∂t

)

coll

=

∫
d3p1

∫
d3p′
∫
d3p′1 w(p′,p′

1 |p,p1)
{
f(p′) f(p′

1) − f(p) f(p1)
}
. (8.150)

The collision integral is nonlinear in the distribution f . We linearize by writing

f(p) = f0(p) + f0(p)ψ(p) , (8.151)

where we assume ψ(p) is small. We then have, to first order in ψ,

(
∂f

∂t

)

coll

= f0(p) L̂ψ + O(ψ2) , (8.152)

where the action of the linearized collision operator is given by

L̂ψ =

∫
d3p1

∫
d3p′
∫
d3p′1 w(p′,p′

1 |p,p1) f
0(p1)

{
ψ(p′) + ψ(p′

1) − ψ(p) − ψ(p1)
}

=

∫
d3p1

∫
dΩ |v − v1|

∂σ

∂Ω
f0(p1)

{
ψ(p′) + ψ(p′

1) − ψ(p) − ψ(p1)
}
,

(8.153)

where we have invoked eqn. 8.55 to write the RHS in terms of the differential scattering cross section. In deriving
the above result, we have made use of the detailed balance relation,

f0(p) f0(p1) = f0(p′) f0(p′
1) . (8.154)

We have also suppressed the r dependence in writing f(p), f0(p), and ψ(p).

From eqn. 8.85, we then have the linearized equation
(
L̂− ∂

∂t

)
ψ = Y, (8.155)

where, for point particles,

Y =
1

kBT

{
ε(p) − cpT

T
v · ∇T +mvαvβ Qαβ − kB ε(p)

cV
∇·V − F · v

}
. (8.156)

Eqn. 8.155 is an inhomogeneous linear equation, which can be solved by inverting the operator L̂− ∂
∂t .

8.7.2 Linear algebraic properties of L̂

Although L̂ is an integral operator, it shares many properties with other linear operators with which you are
familiar, such as matrices and differential operators. We can define an inner product9,

〈ψ1 |ψ2 〉 ≡
∫
d3p f0(p)ψ1(p)ψ2(p) . (8.157)

9The requirements of an inner product 〈f |g〉 are symmetry, linearity, and non-negative definiteness.
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Note that this is not the usual Hilbert space inner product from quantum mechanics, since the factor f0(p) is

included in the metric. This is necessary in order that L̂ be self-adjoint:

〈ψ1 | L̂ψ2 〉 = 〈 L̂ψ1 |ψ2 〉 . (8.158)

We can now define the spectrum of normalized eigenfunctions of L̂, which we write as φn(p). The eigenfunctions
satisfy the eigenvalue equation,

L̂φn = −λn φn , (8.159)

and may be chosen to be orthonormal,
〈φm |φn 〉 = δmn . (8.160)

Of course, in order to obtain the eigenfunctions φn we must have detailed knowledge of the functionw(p′,p′
1 |p,p1).

Recall that there are five collisional invariants, which are the particle number, the three components of the total
particle momentum, and the particle energy. To each collisional invariant, there is an associated eigenfunction φn

with eigenvalue λn = 0. One can check that these normalized eigenfunctions are

φn(p) =
1√
n

(8.161)

φpα
(p) =

pα√
nmkBT

(8.162)

φε(p) =

√
2

3n

(
ε(p)

kBT
− 3

2

)
. (8.163)

If there are no temperature, chemical potential, or bulk velocity gradients, and there are no external forces, then
Y = 0 and the only changes to the distribution are from collisions. The linearized Boltzmann equation becomes

∂ψ

∂t
= L̂ψ . (8.164)

We can therefore write the most general solution in the form

ψ(p, t) =
∑

n

′
Cn φn(p) e−λnt , (8.165)

where the prime on the sum reminds us that collisional invariants are to be excluded. All the eigenvalues λn,
aside from the five zero eigenvalues for the collisional invariants, must be positive. Any negative eigenvalue
would cause ψ(p, t) to increase without bound, and an initial nonequilibrium distribution would not relax to the
equilibrium f0(p), which we regard as unphysical. Henceforth we will drop the prime on the sum but remember
that Cn = 0 for the five collisional invariants.

Recall also the particle, energy, and thermal (heat) currents,

j =

∫
d3p v f(p) =

∫
d3p f0(p)v ψ(p) = 〈v |ψ 〉

jε =

∫
d3p v ε f(p) =

∫
d3p f0(p)v ε ψ(p) = 〈v ε |ψ 〉

jq =

∫
d3p v (ε− µ) f(p) =

∫
d3p f0(p)v (ε− µ)ψ(p) = 〈v (ε− µ) |ψ 〉 .

(8.166)

Note jq = jε − µj.
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8.7.3 Steady state solution to the linearized Boltzmann equation

Under steady state conditions, there is no time dependence, and the linearized Boltzmann equation takes the form

L̂ψ = Y . (8.167)

We may expand ψ in the eigenfunctions φn and write ψ =
∑

n Cn φn. Applying L̂ and taking the inner product
with φj , we have

Cj = − 1

λj

〈φj |Y 〉 . (8.168)

Thus, the formal solution to the linearized Boltzmann equation is

ψ(p) = −
∑

n

1

λn

〈φn |Y 〉 φn(p) . (8.169)

This solution is applicable provided |Y 〉 is orthogonal to the five collisional invariants.

Thermal conductivity

For the thermal conductivity, we take ∇T = ∂zT x̂, and

Y =
1

kBT
2

∂T

∂x
·Xκ , (8.170)

where Xκ ≡ (ε− cpT ) vx. Under the conditions of no particle flow (j = 0), we have jq = −κ ∂xT x̂. Then we have

〈Xκ |ψ 〉 = −κ ∂T
∂x

. (8.171)

Viscosity

For the viscosity, we take

Y =
m

k
B
T

∂Vx

∂y
·Xη , (8.172)

with Xη = vx vy . We then

Πxy = 〈mvx vy |ψ 〉 = −η ∂Vx

∂y
. (8.173)

Thus,

〈Xη |ψ 〉 = − η

m

∂Vx

∂y
. (8.174)

8.7.4 Variational approach

Following the treatment in chapter 1 of Smith and Jensen, define Ĥ ≡ −L̂. We have that Ĥ is a positive semidef-
inite operator, whose only zero eigenvalues correspond to the collisional invariants. We then have the Schwarz
inequality,

〈ψ | Ĥ |ψ 〉 · 〈φ | Ĥ |φ 〉 ≥ 〈φ | Ĥ |ψ 〉2 , (8.175)
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for any two Hilbert space vectors |ψ 〉 and |φ 〉. Consider now the above calculation of the thermal conductivity.
We have

Ĥψ = − 1

kBT
2

∂T

∂x
Xκ (8.176)

and therefore

κ =
kBT

2

(∂T/∂x)2
〈ψ | Ĥ |ψ 〉 ≥ 1

k
B
T 2

〈φ |Xκ 〉2

〈φ | Ĥ |φ 〉
. (8.177)

Similarly, for the viscosity, we have

Ĥψ = − m

kBT

∂Vx

∂y
Xη , (8.178)

from which we derive

η =
k

B
T

(∂Vx/∂y)
2
〈ψ | Ĥ |ψ 〉 ≥ m2

k
B
T

〈φ |Xη 〉2

〈φ | Ĥ |φ 〉
. (8.179)

In order to get a good lower bound, we want φ in each case to have a good overlap with Xκ,η. One approach then
is to take φ = Xκ,η, which guarantees that the overlap will be finite (and not zero due to symmetry, for example).
We illustrate this method with the viscosity calculation. We have

η ≥ m2

k
B
T

〈 vxvy | vxvy 〉2

〈 vxvy | Ĥ | vxvy 〉
. (8.180)

Now the linearized collision operator L̂ acts as

〈φ | L̂ |ψ 〉 =

∫
d3p g0(p)φ(p)

∫
d3p1

∫
dΩ

∂σ

∂Ω
|v − v1| f0(p1)

{
ψ(p) + ψ(p1) − ψ(p′) − ψ(p′

1)
}
. (8.181)

Here the kinematics of the collision guarantee total energy and momentum conservation, so p′ and p′
1 are deter-

mined as in eqn. 8.56.

Now we have
dΩ = sinχdχ dϕ , (8.182)

where χ is the scattering angle depicted in Fig. 8.6 and ϕ is the azimuthal angle of the scattering. The differential
scattering cross section is obtained by elementary mechanics and is known to be

∂σ

∂Ω
=

∣∣∣∣
d(b2/2)

d sinχ

∣∣∣∣ , (8.183)

where b is the impact parameter. The scattering angle is

χ(b, u) = π − 2

∞∫

rp

dr
b√

r4 − b2r2 − 2U(r)r4

m̃u2

, (8.184)

where m̃ = 1
2m is the reduced mass, and rp is the relative coordinate separation at periapsis, i.e. the distance of

closest approach, which occurs when ṙ = 0, i.e.

1
2m̃u

2 =
ℓ2

2m̃r2p
+ U(rp) , (8.185)

where ℓ = m̃ub is the relative coordinate angular momentum.
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Figure 8.6: Scattering in the CM frame. O is the force center and P is the point of periapsis. The impact parameter
is b, and χ is the scattering angle. φ0 is the angle through which the relative coordinate moves between periapsis
and infinity.

We work in center-of-mass coordinates, so the velocities are

v = V + 1
2u v′ = V + 1

2u′ (8.186)

v1 = V − 1
2u v′

1 = V − 1
2u′ , (8.187)

with |u| = |u′| and û · û′ = cosχ. Then if ψ(p) = vxvy , we have

∆(ψ) ≡ ψ(p) + ψ(p1) − ψ(p′) − ψ(p′
1) = 1

2

(
uxuy − u′xu

′
y

)
. (8.188)

We may write

u′ = u
(
sinχ cosϕ ê1 + sinχ sinϕ ê2 + cosχ ê3

)
, (8.189)

where ê3 = û. With this parameterization, we have

2π∫

0

dϕ 1
2

(
uαuβ − u′αu

′
β

)
= −π sin2χ

(
u2 δαβ − 3uαuβ

)
. (8.190)

Note that we have used here the relation

e1α e1β + e2α e2β + e3α e3β = δαβ , (8.191)

which holds since the LHS is a projector
∑3

i=1 |êi〉〈êi|.

It is convenient to define the following integral:

R(u) ≡
∞∫

0

db b sin2χ(b, u) . (8.192)

Since the Jacobian ∣∣∣∣ det
(∂v, ∂v1)

(∂V , ∂u)

∣∣∣∣ = 1 , (8.193)
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we have

〈 vxvy | L̂ | vxvy 〉 = n2

(
m

2πkBT

)3 ∫
d3V

∫
d3u e−mV 2/kBT e−mu2/4kBT · u · 3π

2 uxuy ·R(u) · vxvy . (8.194)

This yields

〈 vxvy | L̂ | vxvy 〉 = π
40 n

2
〈
u5R(u)

〉
, (8.195)

where

〈
F (u)

〉
≡

∞∫

0

du u2 e−mu2/4kBT F (u)

/ ∞∫

0

du u2 e−mu2/4kBT . (8.196)

It is easy to compute the term in the numerator of eqn. 8.180:

〈 vxvy | vxvy 〉 = n

(
m

2πkBT

)3/2 ∫
d3v e−mv2/2kBT v2

x v
2
y = n

(
k

B
T

m

)2
. (8.197)

Putting it all together, we find

η ≥ 40 (kBT )3

πm2

/〈
u5R(u)

〉
. (8.198)

The computation for κ is a bit more tedious. One has ψ(p) = (ε− cpT ) vx, in which case

∆(ψ) = 1
2m
[
(V · u)ux − (V · u′)u′x

]
. (8.199)

Ultimately, one obtains the lower bound

κ ≥ 150 kB (kBT )3

πm3

/〈
u5R(u)

〉
. (8.200)

Thus, independent of the potential, this variational calculation yields a Prandtl number of

Pr =
ν

a
=
η cp
mκ

= 2
3 , (8.201)

which is very close to what is observed in dilute monatomic gases (see Tab. 8.1).

While the variational expressions for η and κ are complicated functions of the potential, for hard sphere scattering
the calculation is simple, because b = d sinφ0 = d cos(1

2χ), where d is the hard sphere diameter. Thus, the impact
parameter b is independent of the relative speed u, and one finds R(u) = 1

3d
3. Then

〈
u5R(u)

〉
= 1

3d
3
〈
u5
〉

=
128√
π

(
k

B
T

m

)5/2

d2 (8.202)

and one finds

η ≥ 5 (mkBT )1/2

16
√
π d2

, κ ≥ 75 kB

64
√
π d2

(
kBT

m

)1/2

. (8.203)
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8.8 The Equations of Hydrodynamics

We now derive the equations governing fluid flow. The equations of mass and momentum balance are

∂ρ

∂t
+ ∇·(ρV ) = 0 (8.204)

∂(ρ Vα)

∂t
+
∂Παβ

∂xβ
= 0 , (8.205)

where

Παβ = ρ VαVβ + p δαβ −

σ̃αβ︷ ︸︸ ︷{
η

(
∂Vα

∂xβ

+
∂Vβ

∂xα

− 2
3 ∇·V δαβ

)
+ ζ ∇·V δαβ

}
. (8.206)

Substituting the continuity equation into the momentum balance equation, one arrives at

ρ
∂V

∂t
+ ρ (V ·∇)V = −∇p+ η∇2V + (ζ + 1

3η)∇(∇·V ) , (8.207)

which, together with continuity, are known as the Navier-Stokes equations. These equations are supplemented by
an equation describing the conservation of energy,

T
∂s

∂T
+ T ∇·(sV ) = σ̃αβ

∂Vα

∂xβ
+ ∇·(κ∇T ) . (8.208)

Note that the LHS of eqn. 8.207 is ρDV /Dt, whereD/Dt is the convective derivative. Multiplying by a differential
volume, this gives the mass times the acceleration of a differential local fluid element. The RHS, multiplied by
the same differential volume, gives the differential force on this fluid element in a frame instantaneously moving
with constant velocity V . Thus, this is Newton’s Second Law for the fluid.

8.9 Nonequilibrium Quantum Transport

8.9.1 Boltzmann equation for quantum systems

Almost everything we have derived thus far can be applied, mutatis mutandis, to quantum systems. The main
difference is that the distribution f0 corresponding to local equilibrium is no longer of the Maxwell-Boltzmann
form, but rather of the Bose-Einstein or Fermi-Dirac form,

f0(r,k, t) =

{
exp

(
ε(k) − µ(r, t)

kBT (r, t)

)
∓ 1

}−1

, (8.209)

where the top sign applies to bosons and the bottom sign to fermions. Here we shift to the more common notation
for quantum systems in which we write the distribution in terms of the wavevector k = p/~ rather than the
momentum p. The quantum distributions satisfy detailed balance with respect to the quantum collision integral

(
∂f

∂t

)

coll

=

∫
d3k1

(2π)3

∫
d3k′

(2π)3

∫
d3k′1
(2π)3

w
{
f ′f ′

1 (1 ± f) (1 ± f1) − ff1 (1 ± f ′) (1 ± f ′
1)
}

(8.210)

where w = w(k,k1 |k′,k′
1), f = f(k), f1 = f(k1), f

′ = f(k′), and f ′
1 = f(k′

1), and where we have assumed
time-reversal and parity symmetry. Detailed balance requires

f

1 ± f
· f1
1 ± f1

=
f ′

1 ± f ′ ·
f ′
1

1 ± f ′
1

, (8.211)
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where f = f0 is the equilibrium distribution. One can check that

f =
1

eβ(ε−µ) ∓ 1
=⇒ f

1 ± f
= eβ(µ−ε) , (8.212)

which is the Boltzmann distribution, which we have already shown to satisfy detailed balance. For the streaming
term, we have

df0 = kBT
∂f0

∂ε
d

(
ε− µ

kBT

)

= kBT
∂f0

∂ε

{
− dµ

kBT
− (ε− µ) dT

kBT
2

+
dε

kBT

}

= −∂f
0

∂ε

{
∂µ

∂r
· dr +

ε− µ

T

∂T

∂r
· dr − ∂ε

∂k
· dk

}
,

(8.213)

from which we read off

∂f0

∂r
= −∂f

0

∂ε

{
∂µ

∂r
+
ε− µ

T

∂T

∂r

}

∂f0

∂k
= ~v

∂f0

∂ε
.

(8.214)

The most important application is to the theory of electron transport in metals and semiconductors, in which case
f0 is the Fermi distribution. In this case, the quantum collision integral also receives a contribution from one-body
scattering in the presence of an external potential U(r), which is given by Fermi’s Golden Rule:

(
∂f(k)

∂t

)′

coll

=
2π

~

∑

k′∈ Ω̂

|
〈
k′ ∣∣U

∣∣k
〉
|2
(
f(k′) − f(k)

)
δ
(
ε(k) − ε(k′)

)

=
2π

~V

∫

Ω̂

d3k

(2π)3
| Û(k − k′)|2

(
f(k′) − f(k)

)
δ
(
ε(k) − ε(k′)

)
.

(8.215)

The wavevectors are now restricted to the first Brillouin zone, and the dispersion ε(k) is no longer the ballistic
form ε = ~

2k2/2m but rather the dispersion for electrons in a particular energy band (typically the valence band)
of a solid10. Note that f = f0 satisfies detailed balance with respect to one-body collisions as well11.

In the presence of a weak electric field E and a (not necessarily weak) magnetic field B, we have, within the
relaxation time approximation, f = f0 + δf with

∂ δf

∂t
− e

~c
v × B · ∂ δf

∂k
− v ·

[
eE+

ε− µ

T
∇T

]
∂f0

∂ε
= −δf

τ
, (8.216)

where E = −∇(φ− µ/e) = E − e−1∇µ is the gradient of the ‘electrochemical potential’ φ− e−1µ. In deriving the

above equation, we have worked to lowest order in small quantities. This entails dropping terms like v· ∂ δf
∂r (higher

order in spatial derivatives) and E · ∂ δf
∂k

(both E and δf are assumed small). Typically τ is energy-dependent, i.e.

τ = τ
(
ε(k)

)
.

10We neglect interband scattering here, which can be important in practical applications, but which is beyond the scope of these notes.
11The transition rate from |k′〉 to |k〉 is proportional to the matrix element and to the product f ′(1− f). The reverse process is proportional

to f(1 − f ′). Subtracting these factors, one obtains f ′ − f , and therefore the nonlinear terms felicitously cancel in eqn. 8.215.
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We can use eqn. 8.216 to compute the electrical current j and the thermal current jq ,

j = −2e

∫

Ω̂

d3k

(2π)3
v δf (8.217)

jq = 2

∫

Ω̂

d3k

(2π)3
(ε− µ)v δf . (8.218)

Here the factor of 2 is from spin degeneracy of the electrons (we neglect Zeeman splitting).

In the presence of a time-independent temperature gradient and electric field, linearized Boltzmann equation in
the relaxation time approximation has the solution

δf = −τ(ε)v ·
(
eE+

ε− µ

T
∇T

)(
−∂f

0

∂ε

)
. (8.219)

We now consider both the electrical current12 j as well as the thermal current density jq . One readily obtains

j = −2e

∫

Ω̂

d3k

(2π)3
v δf ≡ L11 E− L12 ∇T (8.220)

jq = 2

∫

Ω̂

d3k

(2π)3
(ε− µ)v δf ≡ L21 E− L22 ∇T (8.221)

where the transport coefficients L11 etc. are matrices:

Lαβ
11 =

e2

4π3~

∫
dε τ(ε)

(
−∂f

0

∂ε

)∫
dSε

vα vβ

|v| (8.222)

Lαβ
21 = TLαβ

12 = − e

4π3~

∫
dε τ(ε) (ε− µ)

(
−∂f

0

∂ε

)∫
dSε

vα vβ

|v| (8.223)

Lαβ
22 =

1

4π3~T

∫
dε τ(ε) (ε− µ)2

(
−∂f

0

∂ε

)∫
dSε

vα vβ

|v| . (8.224)

If we define the hierarchy of integral expressions

J αβ
n ≡ 1

4π3~

∫
dε τ(ε) (ε− µ)n

(
−∂f

0

∂ε

)∫
dSε

vα vβ

|v| (8.225)

then we may write

Lαβ
11 = e2J αβ

0 , Lαβ
21 = TLαβ

12 = −eJ αβ
1 , Lαβ

22 =
1

T
J αβ

2 . (8.226)

The linear relations in eqn. (8.221) may be recast in the following form:

E = ρ j +Q∇T

jq = ⊓ j − κ∇T ,
(8.227)

where the matrices ρ, Q, ⊓, and κ are given by

ρ = L−1
11 Q = L−1

11 L12 (8.228)

⊓ = L21 L
−1
11 κ = L22 − L21L

−1
11 L12 , (8.229)

12In this section we use j to denote electrical current, rather than particle number current as before.
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Figure 8.7: A thermocouple is a junction formed of two dissimilar metals. With no electrical current passing, an
electric field is generated in the presence of a temperature gradient, resulting in a voltage V = VA − VB.

or, in terms of the Jn,

ρ =
1

e2
J −1

0 Q = − 1

e T
J −1

0 J1 (8.230)

⊓ = −1

e
J1 J −1

0 κ =
1

T

(
J2 − J1 J −1

0 J1

)
, (8.231)

These equations describe a wealth of transport phenomena:

• Electrical resistance (∇T = B = 0)
An electrical current j will generate an electric field E = ρj, where ρ is the electrical resistivity.

• Peltier effect (∇T = B = 0)
An electrical current j will generate an heat current jq = ⊓j, where ⊓ is the Peltier coefficient.

• Thermal conduction (j = B = 0)
A temperature gradient ∇T gives rise to a heat current jq = −κ∇T , where κ is the thermal conductivity.

• Seebeck effect (j = B = 0)
A temperature gradient ∇T gives rise to an electric field E = Q∇T , where Q is the Seebeck coefficient.

One practical way to measure the thermopower is to form a junction between two dissimilar metals, A and B. The
junction is held at temperature T1 and the other ends of the metals are held at temperature T0. One then measures
a voltage difference between the free ends of the metals – this is known as the Seebeck effect. Integrating the
electric field from the free end of A to the free end of B gives

VA − VB = −
B∫

A

E · dl = (QB −QA)(T1 − T0) . (8.232)

What one measures here is really the difference in thermopowers of the two metals. For an absolute measurement
of QA, replace B by a superconductor (Q = 0 for a superconductor). A device which converts a temperature
gradient into an emf is known as a thermocouple.
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Figure 8.8: A sketch of a Peltier effect refrigerator. An electrical current I is passed through a junction between
two dissimilar metals. If the dotted line represents the boundary of a thermally well-insulated body, then the body
cools when ⊓B > ⊓A, in order to maintain a heat current balance at the junction.

The Peltier effect has practical applications in refrigeration technology. Suppose an electrical current I is passed
through a junction between two dissimilar metals, A and B. Due to the difference in Peltier coefficients, there will
be a net heat current into the junction of W = (⊓A − ⊓B) I . Note that this is proportional to I , rather than the
familiar I2 result from Joule heating. The sign of W depends on the direction of the current. If a second junction
is added, to make an ABA configuration, then heat absorbed at the first junction will be liberated at the second. 13

8.9.2 The Heat Equation

We begin with the continuity equations for charge density ρ and energy density ε:

∂ρ

∂t
+ ∇ · j = 0 (8.233)

∂ε

∂t
+ ∇ · jε = j ·E , (8.234)

where E is the electric field14. Now we invoke local thermodynamic equilibrium and write

∂ε

∂t
=
∂ε

∂n

∂n

∂t
+
∂ε

∂T

∂T

∂t

= −µ
e

∂ρ

∂t
+ cV

∂T

∂t
, (8.235)

13To create a refrigerator, stick the cold junction inside a thermally insulated box and the hot junction outside the box.
14Note that it is E · j and not E · j which is the source term in the energy continuity equation.
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where n is the electron number density (n = −ρ/e) and cV is the specific heat. We may now write

cV
∂T

∂t
=
∂ε

∂t
+
µ

e

∂ρ

∂t

= j · E − ∇ · jε −
µ

e
∇ · j

= j · E− ∇ · jq . (8.236)

Invoking jq = ⊓j − κ∇T , we see that if there is no electrical current (j = 0), we obtain the heat equation

cV
∂T

∂t
= καβ

∂2T

∂xα ∂xβ
. (8.237)

This results in a time scale τT for temperature diffusion τT = CL2cV /κ, where L is a typical length scale and C is
a numerical constant. For a cube of size L subjected to a sudden external temperature change, L is the side length
and C = 1/3π2 (solve by separation of variables).

8.9.3 Calculation of Transport Coefficients

We will henceforth assume that sufficient crystalline symmetry exists (e.g. cubic symmetry) to render all the trans-
port coefficients multiples of the identity matrix. Under such conditions, we may write J αβ

n = Jn δαβ with

Jn =
1

12π3~

∫
dε τ(ε) (ε− µ)n

(
−∂f

0

∂ε

)∫
dSε |v| . (8.238)

The low-temperature behavior is extracted using the Sommerfeld expansion,

I ≡
∞∫

−∞

dεH(ε)

(
−∂f

0

∂ε

)
= πD csc(πD)H(ε)

∣∣∣
ε=µ

(8.239)

= H(µ) +
π2

6
(kBT )2H ′′(µ) + . . . (8.240)

where D ≡ k
B
T ∂

∂ε is a dimensionless differential operator.15

Let us now perform some explicit calculations in the case of a parabolic band with an energy-independent scat-
tering time τ . In this case, one readily finds

Jn =
σ0

e2
µ−3/2 πD cscπD ε3/2 (ε− µ)n

∣∣∣
ε=µ

, (8.241)

where σ0 = ne2τ/m∗. Thus,

J0 =
σ0

e2

[
1 +

π2

8

(kBT )2

µ2
+ . . .

]

J1 =
σ0

e2
π2

2

(k
B
T )2

µ
+ . . .

J2 =
σ0

e2
π2

3
(k

B
T )2 + . . . ,

(8.242)

15Remember that physically the fixed quantities are temperature and total carrier number density (or charge density, in the case of electron
and hole bands), and not temperature and chemical potential. An equation of state relating n, µ, and T is then inverted to obtain µ(n, T ), so
that all results ultimately may be expressed in terms of n and T .
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from which we obtain the low-T results ρ = σ−1
0 ,

Q = −π
2

2

k2
B
T

e εF
κ =

π2

3

nτ

m∗ k
2
B
T , (8.243)

and of course ⊓ = TQ. The predicted universal ratio

κ

σT
=
π2

3
(kB/e)

2 = 2.45 × 10−8 V2 K−2 , (8.244)

is known as the Wiedemann-Franz law. Note also that our result for the thermopower is unambiguously nega-
tive. In actuality, several nearly free electron metals have positive low-temperature thermopowers (Cs and Li, for
example). What went wrong? We have neglected electron-phonon scattering!

8.9.4 Onsager Relations

Transport phenomena are described in general by a set of linear relations,

Ji = Lik Fk , (8.245)

where the {Fk} are generalized forces and the {Ji} are generalized currents. Moreover, to each force Fi corresponds a
unique conjugate current Ji, such that the rate of internal entropy production is

Ṡ =
∑

i

Fi Ji =⇒ Fi =
∂Ṡ

∂Ji
. (8.246)

The Onsager relations (also known as Onsager reciprocity) state that

Lik(B) = ηi ηk Lki(−B) , (8.247)

where ηi describes the parity of Ji under time reversal:

JT
i = ηi Ji , (8.248)

where JT
i is the time reverse of Ji. To justify the Onsager relations requires a microscopic description of our

nonequilibrium system.

The Onsager relations have some remarkable consequences. For example, they require, for B = 0, that the thermal

conductivity tensor κij of any crystal must be symmetric, independent of the crystal structure. In general,this
result does not follow from considerations of crystalline symmetry. It also requires that for every ‘off-diagonal’
transport phenomenon, e.g. the Seebeck effect, there exists a distinct corresponding phenomenon, e.g. the Peltier
effect.

For the transport coefficients studied, Onsager reciprocity means that in the presence of an external magnetic field,

ραβ(B) = ρβα(−B) (8.249)

καβ(B) = κβα(−B) (8.250)

⊓αβ(B) = T Qβα(−B) . (8.251)

Let’s consider an isotropic system in a weak magnetic field, and expand the transport coefficients to first order in
B:

ραβ(B) = ρ δαβ + ν ǫαβγ B
γ (8.252)

καβ(B) = κ δαβ +̟ ǫαβγ B
γ (8.253)

Qαβ(B) = Qδαβ + ζ ǫαβγ B
γ (8.254)

⊓αβ(B) = ⊓ δαβ + θ ǫαβγB
γ . (8.255)
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Onsager reciprocity requires ⊓ = T Q and θ = T ζ. We can now write

E = ρ j + ν j × B +Q∇T + ζ∇T × B (8.256)

jq = ⊓ j + θ j × B − κ∇T −̟∇T × B . (8.257)

There are several new phenomena lurking:

• Hall effect ( ∂T
∂x = ∂T

∂y = jy = 0)

An electrical current j = jx x̂ and a field B = Bz ẑ yield an electric field E. The Hall coefficient is RH =
Ey/jxBz = −ν.

• Ettingshausen effect ( ∂T
∂x = jy = jq,y = 0)

An electrical current j = jx x̂ and a field B = Bz ẑ yield a temperature gradient ∂T
∂y . The Ettingshausen

coefficient is P = ∂T
∂y

/
jxBz = −θ/κ.

• Nernst effect (jx = jy = ∂T
∂y = 0)

A temperature gradient ∇T = ∂T
∂x x̂ and a field B = Bz ẑ yield an electric field E. The Nernst coefficient is

Λ = Ey

/
∂T
∂x Bz = −ζ.

• Righi-Leduc effect (jx = jy = Ey = 0)

A temperature gradient ∇T = ∂T
∂x x̂ and a field B = Bz ẑ yield an orthogonal temperature gradient ∂T

∂y .

The Righi-Leduc coefficient is L = ∂T
∂y

/
∂T
∂xBz = ζ/Q.

8.10 Stochastic Processes

A stochastic process is one which is partially random, i.e. it is not wholly deterministic. Typically the randomness is
due to phenomena at the microscale, such as the effect of fluid molecules on a small particle, such as a piece of dust
in the air. The resulting motion (called Brownian motion in the case of particles moving in a fluid) can be described
only in a statistical sense. That is, the full motion of the system is a functional of one or more independent random
variables. The motion is then described by its averages with respect to the various random distributions.

8.10.1 Langevin equation and Brownian motion

Consider a particle of mass M subjected to dissipative and random forcing. We’ll examine this system in one
dimension to gain an understanding of the essential physics. We write

ṗ+ γp = F + η(t) . (8.258)

Here, γ is the damping rate due to friction, F is a constant external force, and η(t) is a stochastic random force.
This equation, known as the Langevin equation, describes a ballistic particle being buffeted by random forcing
events. Think of a particle of dust as it moves in the atmosphere; F would then represent the external force due
to gravity and η(t) the random forcing due to interaction with the air molecules. For a sphere of radius a moving
with velocity v in a fluid, the Stokes drag is given by Fdrag = −6πηav, where a is the radius. Thus,

γ
Stokes

=
6πηa

M
, (8.259)

where M is the mass of the particle. It is illustrative to compute γ in some setting. Consider a micron sized
droplet (a = 10−4 cm) of some liquid of density ρ ∼ 1.0 g/cm3 moving in air at T = 20◦ C. The viscosity of air is
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η = 1.8 × 10−4 g/cm · s at this temperature16. If the droplet density is constant, then γ = 9η/2ρa2 = 8.1 × 104 s−1,
hence the time scale for viscous relaxation of the particle is τ = γ−1 = 12µs. We should stress that the viscous
damping on the particle is of course due to the fluid molecules, in some average ‘coarse-grained’ sense. The
random component to the force η(t) would then represent the fluctuations with respect to this average.

We can easily integrate this equation:

d

dt

(
p eγt

)
= F eγt + η(t) eγt

p(t) = p(0) e−γt +
F

γ

(
1 − e−γt

)
+

t∫

0

ds η(s) eγ(s−t)
(8.260)

Note that p(t) is indeed a functional of the random function η(t). We can therefore only compute averages in order
to describe the motion of the system.

The first average we will compute is that of p itself. In so doing, we assume that η(t) has zero mean:
〈
η(t)

〉
= 0.

Then
〈
p(t)

〉
= p(0) e−γt +

F

γ

(
1 − e−γt

)
. (8.261)

On the time scale γ−1, the initial conditions p(0) are effectively forgotten, and asymptotically for t≫ γ−1 we have〈
p(t)

〉
→ F/γ, which is the terminal momentum.

Next, consider

〈
p2(t)

〉
=
〈
p(t)

〉2
+

t∫

0

ds1

t∫

0

ds2 e
γ(s1−t) eγ(s2−t)

〈
η(s1) η(s2)

〉
. (8.262)

We now need to know the two-time correlator
〈
η(s1) η(s2)

〉
. We assume that the correlator is a function only of

the time difference ∆s = s1 − s2, so that the random force η(s) satisfies

〈
η(s)

〉
= 0 (8.263)

〈
η(s1) η(s2)

〉
= φ(s1 − s2) . (8.264)

The function φ(s) is the autocorrelation function of the random force. A macroscopic object moving in a fluid is
constantly buffeted by fluid particles over its entire perimeter. These different fluid particles are almost completely
uncorrelated, hence φ(s) is basically nonzero except on a very small time scale τφ, which is the time a single fluid
particle spends interacting with the object. We can take τφ → 0 and approximate

φ(s) ≈ Γ δ(s) . (8.265)

We shall determine the value of Γ from equilibrium thermodynamic considerations below.

With this form for φ(s), we can easily calculate the equal time momentum autocorrelation:

〈
p2(t)

〉
=
〈
p(t)

〉2
+ Γ

t∫

0

ds e2γ(s−t)

=
〈
p(t)

〉2
+
Γ

2γ

(
1 − e−2γt

)
.

(8.266)

16The cgs unit of viscosity is the Poise (P). 1P = 1 g/cm·s.
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Consider the case where F = 0 and the limit t ≫ γ−1. We demand that the object thermalize at temperature T .
Thus, we impose the condition

〈
p2(t)

2M

〉
= 1

2kB
T =⇒ Γ = 2γMk

B
T , (8.267)

where M is the particle’s mass. This determines the value of Γ .

We can now compute the general momentum autocorrelator:

〈
p(t) p(t′)

〉
−
〈
p(t)

〉〈
p(t′)

〉
=

t∫

0

ds

t′∫

0

ds′ eγ(s−t) eγ(s′−t′)
〈
η(s) η(s′)

〉

= MkBT e
−γ|t−t′| (t, t′ → ∞ , |t− t′| finite) .

(8.268)

The full expressions for this and subsequent expressions, including subleading terms, are contained in an ap-
pendix, §8.14.

Let’s now compute the position x(t). We find

x(t) =
〈
x(t)

〉
+

1

M

t∫

0

ds

s∫

0

ds1 η(s1) e
γ(s1−s) , (8.269)

where
〈
x(t)

〉
= x(0) +

Ft

γM
+

1

γ

(
v(0) − F

γM

)(
1 − e−γt

)
. (8.270)

Note that for γt ≪ 1 we have
〈
x(t)

〉
= x(0) + v(0) t + 1

2M
−1Ft2 + O(t3), as is appropriate for ballistic particles

moving under the influence of a constant force. This long time limit of course agrees with our earlier evaluation
for the terminal velocity, v∞ =

〈
p(∞)

〉
/M = F/γM . We next compute the position autocorrelation:

〈
x(t)x(t′)

〉
−
〈
x(t)

〉〈
x(t′)

〉
=

1

M2

t∫

0

ds

t′∫

0

ds′ e−γ(s+s′)

s∫

0

ds1

s′∫

0

ds′1 e
γ(s1+s2)

〈
η(s1) η(s2)

〉

=
2k

B
T

γM
min(t, t′) + O(1) .

In particular, the equal time autocorrelator is

〈
x2(t)

〉
−
〈
x(t)

〉2
=

2kBT t

γM
≡ 2D t , (8.271)

at long times, up to terms of order unity. Here,

D =
k

B
T

γM
(8.272)

is the diffusion constant. For a liquid droplet of radius a = 1µm moving in air at T = 293 K, for which η =
1.8 × 10−4 P, we have

D =
kBT

6πηa
=

(1.38 × 10−16 erg/K) (293 K)

6π (1.8 × 10−4 P) (10−4 cm)
= 1.19 × 10−7 cm2/s . (8.273)

This result presumes that the droplet is large enough compared to the intermolecular distance in the fluid that one
can adopt a continuum approach and use the Navier-Stokes equations, and then assuming a laminar flow.
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If we consider molecular diffusion, the situation is quite a bit different. As we shall derive below in §8.10.3, the
molecular diffusion constant is D = ℓ2/2τ , where ℓ is the mean free path and τ is the collision time. As we found
in eqn. 8.91, the mean free path ℓ, collision time τ , number density n, and total scattering cross section σ are related
by

ℓ = v̄τ =
1√
2nσ

, (8.274)

where v̄ =
√

8kBT/πm is the average particle speed. Approximating the particles as hard spheres, we have
σ = 4πa2, where a is the hard sphere radius. At T = 293 K, and p = 1 atm, we have n = p/k

B
T = 2.51 ×

1019 cm−3. Since air is predominantly composed of N2 molecules, we take a = 1.90×10−8 cm andm = 28.0 amu =
4.65 × 10−23 g, which are appropriate for N2. We find an average speed of v̄ = 471 m/s and a mean free path of
ℓ = 6.21 × 10−6 cm. Thus, D = 1

2ℓv̄ = 0.146 cm2/s. Though much larger than the diffusion constant for large
droplets, this is still too small to explain common experiences. Suppose we set the characteristic distance scale
at d = 10 cm and we ask how much time a point source would take to diffuse out to this radius. The answer is
∆t = d2/2D = 343 s, which is between five and six minutes. Yet if someone in the next seat emits a foul odor,
your sense the offending emission in on the order of a second. What this tells us is that diffusion isn’t the only
transport process involved in these and like phenomena. More important are convection currents which distribute
the scent much more rapidly.

8.10.2 Langevin equation for a particle in a harmonic well

Consider next the equation

MẌ + γMẊ +Mω2
0X = F0 + η(t) , (8.275)

where F0 is a constant force. We write X =
F0

Mω2
0

+ x and measure x relative to the potential minimum, yielding

ẍ+ γ ẋ+ ω2
0 x =

1

M
η(t) . (8.276)

At this point there are several ways to proceed.

Perhaps the most straightforward is by use of the Laplace transform. Recall:

x̂(ν) =

∞∫

0

dt e−νt η(ν) (8.277)

x(t) =

∫

C

dν

2πi
e+νt x̂(ν) , (8.278)

where the contour C proceeds from a − i∞ to a + i∞ such that all poles of the integrand lie to the left of C. We
then have

1

M

∞∫

0

dt e−νt η(t) =
1

M

∞∫

0

dt e−νt
(
ẍ+ γ ẋ+ ω2

0 x
)

= −(ν + γ)x(0) − ẋ(0) +
(
ν2 + γν + ω2

0

)
x̂(ν) . (8.279)

Thus, we have

x̂(ν) =
(ν + γ)x(0) + ẋ(0)

ν2 + γν + ω2
0

+
1

M
· 1

ν2 + γν + ω2
0

∞∫

0

dt e−νt η(t) . (8.280)
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Now we may write
ν2 + γν + ω2

0 = (ν − ν+)(ν − ν−) , (8.281)

where

ν± = − 1
2γ ±

√
1
4γ

2 − ω2
0 . (8.282)

Note that Re (ν±) ≤ 0 and that γ + ν± = −ν∓.

Performing the inverse Laplace transform, we obtain

x(t) =
x(0)

ν+ − ν−

(
ν+ e

ν
−

t − ν− e
ν+t
)

+
ẋ(0)

ν+ − ν−

(
eν+t − eν

−
t
)

+

∞∫

0

ds K(t− s) η(s) ,

(8.283)

where

K(t− s) =
Θ(t− s)

M (ν+ − ν−)

(
eν+(t−s) − eν

−
(t−s)

)
(8.284)

is the response kernel and Θ(t− s) is the step function which is unity for t > s and zero otherwise. The response is
causal, i.e. x(t) depends on η(s) for all previous times s < t, but not for future times s > t. Note that K(τ) decays
exponentially for τ → ∞, if Re(ν±) < 0. The marginal case where ω0 = 0 and ν+ = 0 corresponds to the diffusion
calculation we performed in the previous section.

8.10.3 Discrete random walk

Consider an object moving on a one-dimensional lattice in such a way that every time step it moves either one
unit to the right or left, at random. If the lattice spacing is ℓ, then after n time steps the position will be

xn = ℓ

n∑

j=1

σj , (8.285)

where

σj =

{
+1 if motion is one unit to right at time step j

−1 if motion is one unit to left at time step j .
(8.286)

Clearly 〈σj〉 = 0, so 〈xn〉 = 0. Now let us compute

〈
x2

n

〉
= ℓ2

n∑

j=1

n∑

j′=1

〈σjσj′ 〉 = nℓ2 , (8.287)

where we invoke 〈
σjσj′

〉
= δjj′ . (8.288)

If the length of each time step is τ , then we have, with t = nτ ,

〈
x2(t)

〉
=
ℓ2

τ
t , (8.289)

and we identify the diffusion constant

D =
ℓ2

2τ
. (8.290)
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Suppose, however, the random walk is biased, so that the probability for each independent step is given by

P (σ) = p δσ,1 + q δσ,−1 , (8.291)

where p+ q = 1. Then
〈σj〉 = p− q = 2p− 1 (8.292)

and

〈σjσj′ 〉 = (p− q)2
(
1 − δjj′

)
+ δjj′

= (2p− 1)2 + 4 p (1 − p) δjj′ .
(8.293)

Then

〈xn〉 = (2p− 1) ℓn (8.294)
〈
x2

n

〉
−
〈
xn

〉2
= 4 p (1 − p) ℓ2n . (8.295)

8.10.4 Fokker-Planck equation

Suppose x(t) is a stochastic variable. We define the quantity

δx(t) ≡ x(t+ δt) − x(t) , (8.296)

and we assume
〈
δx(t)

〉
= F1

(
x(t)

)
δt (8.297)

〈[
δx(t)

]2〉
= F2

(
x(t)

)
δt (8.298)

but
〈[
δx(t)

]n〉
= O

(
(δt)2

)
for n > 2. The n = 1 term is due to drift and the n = 2 term is due to diffusion. Now

consider the conditional probability density, P (x, t |x0, t0), defined to be the probability distribution for x ≡ x(t)
given that x(t0) = x0. The conditional probability density satisfies the composition rule,

P (x2, t2 |x0, t0) =

∞∫

−∞

dx1 P (x2, t2 |x1, t1)P (x1, t1 |x0, t0) , (8.299)

for any value of t1. This is also known as the Chapman-Kolmogorov equation. In words, what it says is that the
probability density for a particle being at x2 at time t2, given that it was at x0 at time t0, is given by the product of
the probability density for being at x2 at time t2 given that it was at x1 at t1, multiplied by that for being at x1 at t1
given it was at x0 at t0, integrated over x1. This should be intuitively obvious, since if we pick any time t1 ∈ [t0, t2],
then the particle had to be somewhere at that time. Indeed, one wonders how Chapman and Kolmogorov got their
names attached to a result that is so obvious. At any rate, a picture is worth a thousand words: see fig. 8.9.

Proceeding, we may write

P (x, t+ δt |x0, t0) =

∞∫

−∞

dx′ P (x, t+ δt |x′, t)P (x′, t |x0, t0) . (8.300)

Now

P (x, t+ δt |x′, t) =
〈
δ
(
x− δx(t) − x′

)〉

=

{
1 +

〈
δx(t)

〉 d

dx′
+ 1

2

〈[
δx(t)

]2〉 d2

dx′2
+ . . .

}
δ(x− x′) (8.301)

= δ(x− x′) + F1(x
′)
d δ(x − x′)

dx′
δt+ 1

2F2(x
′)
d2δ(x− x′)

dx′2
δt+ O

(
(δt)2

)
,
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Figure 8.9: Interpretive sketch of the mathematics behind the Chapman-Kolmogorov equation.

where the average is over the random variables. We now insert this result into eqn. 8.300, integrate by parts,
divide by δt, and then take the limit δt→ 0. The result is the Fokker-Planck equation,

∂P

∂t
= − ∂

∂x

[
F1(x)P (x, t)

]
+

1

2

∂2

∂x2

[
F2(x)P (x, t)

]
. (8.302)

8.10.5 Brownian motion redux

Let’s apply our Fokker-Planck equation to a description of Brownian motion. From our earlier results, we have

F1(x) =
F

γM
, F2(x) = 2D . (8.303)

A formal proof of these results is left as an exercise for the reader. The Fokker-Planck equation is then

∂P

∂t
= −u ∂P

∂x
+D

∂2P

∂x2
, (8.304)

where u = F/γM is the average terminal velocity. If we make a Galilean transformation and define

y = x− ut , s = t (8.305)

then our Fokker-Planck equation takes the form

∂P

∂s
= D

∂2P

∂y2
. (8.306)

This is known as the diffusion equation. Eqn. 8.304 is also a diffusion equation, rendered in a moving frame.
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While the Galilean transformation is illuminating, we can easily solve eqn. 8.304 without it. Let’s take a look at
this equation after Fourier transforming from x to q:

P (x, t) =

∞∫

−∞

dq

2π
eiqx P̂ (q, t) (8.307)

P̂ (q, t) =

∞∫

−∞

dx e−iqx P (x, t) . (8.308)

Then as should be well known to you by now, we can replace the operator ∂
∂x with multiplication by iq, resulting

in
∂

∂t
P̂ (q, t) = −(Dq2 + iqu) P̂ (q, t) , (8.309)

with solution
P̂ (q, t) = e−Dq2t e−iqut P̂ (q, 0) . (8.310)

We now apply the inverse transform to get back to x-space:

P (x, t) =

∞∫

−∞

dq

2π
eiqx e−Dq2t e−iqut

∞∫

−∞

dx′ e−iqx′

P (x′, 0)

=

∞∫

−∞

dx′ P (x′, 0)

∞∫

−∞

dq

2π
e−Dq2t eiq(x−ut−x′)

=

∞∫

−∞

dx′ K(x− x′, t)P (x′, 0) ,

(8.311)

where

K(x, t) =
1√

4πDt
e−(x−ut)2/4Dt (8.312)

is the diffusion kernel. We now have a recipe for obtaining P (x, t) given the initial conditions P (x, 0). If P (x, 0) =
δ(x), describing a particle confined to an infinitesimal region about the origin, then P (x, t) = K(x, t) is the prob-
ability distribution for finding the particle at x at time t. There are two aspects to K(x, t) which merit comment.
The first is that the center of the distribution moves with velocity u. This is due to the presence of the external

force. The second is that the standard deviation σ =
√

2Dt is increasing in time, so the distribution is not only
shifting its center but it is also getting broader as time evolves. This movement of the center and broadening are
what we have called drift and diffusion, respectively.

8.10.6 Master Equation

Another way to model stochastic processes is via the master equation, which was discussed in chapter 3. Recall
that if Pi(t) is the probability for a system to be in state | i 〉 at time t and Wij is the transition rate from state | j 〉 to
state | i 〉, then

dPi

dt
=
∑

j

(
WijPj −WjiPi

)
. (8.313)

Consider a birth-death process in which the states |n 〉 are labeled by nonnegative integers. Let αn denote the
rate of transitions from |n 〉 → |n+ 1 〉 and let βn denote the rate of transitions from |n 〉 → |n− 1 〉. The master



8.10. STOCHASTIC PROCESSES 45

equation then takes the form17

dPn

dt
= αn−1Pn−1 + βn+1Pn+1 −

(
αn + βn

)
Pn . (8.314)

Let us assume we can write αn = Kᾱ(n/K) and βn = Kβ̄(n/K), where K ≫ 1. We assume the distribution
Pn(t) has a time-dependent maximum at n = Kφ(t) and a width proportional to

√
K. We expand relative to this

maximum, writing n ≡ Kφ(t)+
√
K ξ and we define Pn(t) ≡ Π(ξ, t). We now rewrite the master equation in eqn.

8.314 in terms of Π(ξ, t). Since n is an independent variable, we set

dn = Kφ̇dt+
√
K dξ ⇒ dξ

∣∣
n

= −
√
K φ̇ dt . (8.315)

Therefore
dPn

dt
= −

√
K φ̇

∂Π

∂ξ
+
∂Π

∂t
. (8.316)

Next, we write, for any function fn ,

fn = Kf
(
φ+K−1/2ξ

)

= Kf(φ) +K1/2 ξ f ′(φ) + 1
2 ξ

2 f ′′(φ) + . . . .
(8.317)

Similarly,

fn±1 = Kf
(
φ+K−1/2ξ ±K−1

)

= Kf(φ) +K1/2 ξ f ′(φ) ± f ′(φ) + 1
2 ξ

2 f ′′(φ) + . . . .
(8.318)

Dividing both sides of eqn. 8.314 by
√
K , we have

−∂Π
∂ξ

φ̇+K−1/2 ∂Π

∂t
= (β̄ − ᾱ)

∂Π

∂ξ
+K−1/2

{
(β̄′ − ᾱ′) ξ

∂Π

∂ξ
+ 1

2 (ᾱ+ β̄)
∂2Π

∂ξ2
+ (β̄′ − ᾱ′)Π

}
+ . . . . (8.319)

Equating terms of order K0 yields the equation

φ̇ = f(φ) ≡ ᾱ(φ) − β̄(φ) . (8.320)

Equating terms of order K−1/2 yields the Fokker-Planck equation,

∂Π

∂t
= −f ′(φ(t)

) ∂
∂ξ

(
ξ Π
)

+ 1
2g
(
φ(t)

) ∂2Φ

∂ξ2
, (8.321)

where g(φ) ≡ ᾱ(φ) + β̄(φ). If in the limit t → ∞, eqn. 8.320 evolves to a stable fixed point φ∗, then the stationary
solution of the Fokker-Planck eqn. 8.321,Πeq(ξ) = Π(ξ, t = ∞) must satisfy

−f ′(φ∗)
∂

∂ξ

(
ξ Πeq

)
+ 1

2 g(φ
∗)
∂2Πeq

∂ξ2
= 0 ⇒ Πeq(ξ) =

1√
2πσ2

e−ξ2/2σ2

, (8.322)

where

σ2 = − g(φ∗)

2f ′(φ∗)
. (8.323)

Now both α and β are rates, hence both are positive and thus g(φ) > 0. We see that the condition σ2 > 0 , which
is necessary for a normalizable equilibrium distribution, requires f ′(φ∗) < 0, which is saying that the fixed point
in Eqn. 8.320 is stable.

17We further demand βn=0
= 0 and P

−1
(t) = 0 at all times.
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8.11 Appendix I : Boltzmann Equation and Collisional Invariants

Problem : The linearized Boltzmann operator Lψ is a complicated functional. Suppose we replace L by L, where

Lψ = −γ ψ(v, t) + γ

(
m

2πk
B
T

)3/2 ∫
d3u exp

(
− mu2

2k
B
T

)

×
{

1 +
m

k
B
T

u · v +
2

3

(
mu2

2k
B
T

− 3

2

)(
mv2

2k
B
T

− 3

2

)}
ψ(u, t) .

(8.324)

Show that L shares all the important properties of L. What is the meaning of γ? Expand ψ(v, t) in spherical
harmonics and Sonine polynomials,

ψ(v, t) =
∑

rℓm

arℓm(t)Sr

ℓ+
1
2

(x)xℓ/2 Y ℓ
m(n̂), (8.325)

with x = mv2/2k
B
T , and thus express the action of the linearized Boltzmann operator algebraically on the expan-

sion coefficients arℓm(t).

The Sonine polynomials Sn
α(x) are a complete, orthogonal set which are convenient to use in the calculation of

transport coefficients. They are defined as

Sn
α(x) =

n∑

m=0

Γ(α + n+ 1) (−x)m

Γ(α+m+ 1) (n−m)!m!
, (8.326)

and satisfy the generalized orthogonality relation

∞∫

0

dx e−x xα Sn
α(x)Sn′

α (x) =
Γ(α+ n+ 1)

n!
δnn′ . (8.327)

Solution : The ‘important properties’ of L are that it annihilate the five collisional invariants, i.e. 1, v, and v2, and
that all other eigenvalues are negative. That this is true for L can be verified by an explicit calculation.

Plugging the conveniently parameterized form of ψ(v, t) into L, we have

Lψ = −γ
∑

rℓm

arℓm(t) Sr

ℓ+
1
2

(x) xℓ/2 Y ℓ
m(n̂) +

γ

2π3/2

∑

rℓm

arℓm(t)

∞∫

0

dx1 x
1/2
1 e−x1

×
∫
dn̂1

[
1 + 2 x1/2x

1/2
1 n̂·n̂1 + 2

3

(
x− 3

2

)(
x1 − 3

2

)]
Sr

ℓ+
1
2

(x1) x
ℓ/2
1 Y ℓ

m(n̂1) ,

(8.328)

where we’ve used

u =

√
2k

B
T

m
x

1/2
1 , du =

√
k

B
T

2m
x
−1/2
1 dx1 . (8.329)

Now recall Y 0
0 (n̂) = 1√

4π
and

Y 1
1 (n̂) = −

√
3

8π
sin θ eiϕ Y 1

0 (n̂) =

√
3

4π
cos θ Y 1

−1(n̂) = +

√
3

8π
sin θ e−iϕ

S0
1/2(x) = 1 S0

3/2(x) = 1 S1
1/2(x) = 3

2 − x ,
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which allows us to write

1 = 4π Y 0
0 (n̂)Y 0

0
∗
(n̂1) (8.330)

n̂·n̂1 =
4π

3

[
Y 1

0 (n̂)Y 1
0
∗
(n̂1) + Y 1

1 (n̂)Y 1
1
∗
(n̂1) + Y 1

−1(n̂)Y 1
−1

∗
(n̂1)

]
. (8.331)

We can do the integrals by appealing to the orthogonality relations for the spherical harmonics and Sonine poly-
nomials:

∫
dn̂Y ℓ

m(n̂)Y l′

m′

∗
(n̂) = δll′ δmm′ (8.332)

∞∫

0

dx e−x xα Sn
α(x)Sn′

α (x) =
Γ(n+ α+ 1)

Γ(n+ 1)
δnn′ . (8.333)

Integrating first over the direction vector n̂1,

Lψ = −γ
∑

rℓm

arℓm(t) Sr

ℓ+
1
2

(x) xℓ/2 Y ℓ
m(n̂)

+
2γ√
π

∑

rℓm

arℓm(t)

∞∫

0

dx1 x
1/2
1 e−x1

∫
dn̂1

[
Y 0

0 (n̂)Y 0
0
∗
(n̂1)S

0
1/2(x)S

0
1/2(x1)

+ 2
3 x

1/2x
1/2
1

1∑

m′=−1

Y 1
m′(n̂)Y 1

m′

∗
(n̂1)S

0
3/2(x)S

0
3/2(x1)

+ 2
3 Y

0
0 (n̂)Y 0

0
∗
(n̂1)S

1
1/2(x)S

1
1/2(x1)

]
Sr

ℓ+
1
2

(x1) x
ℓ/2
1 Y ℓ

m(n̂1) ,

(8.334)

we obtain the intermediate result

Lψ = −γ
∑

rℓm

arℓm(t) Sr

ℓ+
1
2

(x) xℓ/2 Y ℓ
m(n̂)

+
2γ√
π

∑

rℓm

arℓm(t)

∞∫

0

dx1 x
1/2
1 e−x1

[
Y 0

0 (n̂) δl0 δm0 S
0
1/2(x)S

0
1/2(x1)

+ 2
3 x

1/2x
1/2
1

1∑

m′=−1

Y 1
m′(n̂) δl1 δmm′ S0

3/2(x)S
0
3/2(x1)

+ 2
3 Y

0
0 (n̂) δl0 δm0 S

1
1/2(x)S

1
1/2(x1)

]
Sr

ℓ+
1
2

(x1) x
1/2
1 .

(8.335)

Appealing now to the orthogonality of the Sonine polynomials, and recalling that

Γ(1
2 ) =

√
π , Γ(1) = 1 , Γ(z + 1) = z Γ(z) , (8.336)

we integrate over x1. For the first term in brackets, we invoke the orthogonality relation with n = 0 and α = 1
2 ,

giving Γ(3
2 ) = 1

2

√
π. For the second bracketed term, we have n = 0 but α = 3

2 , and we obtain Γ(5
2 ) = 3

2 Γ(3
2 ),

while the third bracketed term involves leads to n = 1 and α = 1
2 , also yielding Γ(5

2 ) = 3
2 Γ(3

2 ). Thus, we obtain
the simple and pleasing result

Lψ = −γ
∑

rℓm

′
arℓm(t) Sr

ℓ+
1
2

(x) xℓ/2 Y ℓ
m(n̂) (8.337)
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where the prime on the sum indicates that the set

CI =
{
(0, 0, 0) , (1, 0, 0) , (0, 1, 1) , (0, 1, 0) , (0, 1,−1)

}
(8.338)

are to be excluded from the sum. But these are just the functions which correspond to the five collisional invariants!
Thus, we learn that

ψrℓm(v) = Nrℓm Sr

ℓ+
1
2

(x)xℓ/2 Y ℓ
m(n̂), (8.339)

is an eigenfunction of L with eigenvalue −γ if (r, ℓ,m) does not correspond to one of the five collisional invariants.
In the latter case, the eigenvalue is zero. Thus, the algebraic action of L on the coefficients arℓm is

(La)rℓm =

{
−γ arℓm if (r, ℓ,m) /∈ CI

= 0 if (r, ℓ,m) ∈ CI
(8.340)

The quantity τ = γ−1 is the relaxation time.

It is pretty obvious that L is self-adjoint, since

〈φ | Lψ 〉 ≡
∫
d3v f0(v)φ(v)L[ψ(v)]

= −γ n
(

m

2πkBT

)3/2∫
d3v exp

(
− mv2

2kBT

)
φ(v)ψ(v)

+ γ n

(
m

2πkBT

)3 ∫
d3v

∫
d3u exp

(
− mu2

2kBT

)
exp

(
− mv2

2kBT

)

× φ(v)

[
1 +

m

k
B
T

u · v +
2

3

(
mu2

2k
B
T

− 3

2

)(
mv2

2k
B
T

− 3

2

)]
ψ(u)

= 〈 Lφ |ψ 〉 ,

(8.341)

where n is the bulk number density and f0(v) is the Maxwellian velocity distribution.

8.12 Appendix II : Distributions and Functionals

Let x ∈ R be a random variable, and P (x) a probability distribution for x. The average of any function φ(x) is then

〈
φ(x)

〉
=

∞∫

−∞

dx P (x)φ(x)

/ ∞∫

−∞

dx P (x) . (8.342)

Let η(t) be a random function of t, with η(t) ∈ R, and let P
[
η(t)

]
be the probability distribution functional for η(t).

Then if Φ
[
η(t)

]
is a functional of η(t), the average of Φ is given by

∫
Dη P

[
η(t)

]
Φ
[
η(t)

]
/∫

Dη P
[
η(t)

]
(8.343)

The expression
∫
Dη P [η]Φ[η] is a functional integral. A functional integral is a continuum limit of a multivariable

integral. Suppose η(t) were defined on a set of t values tn = nτ . A functional of η(t) becomes a multivariable
function of the values ηn ≡ η(tn). The metric then becomes

Dη −→
∏

n

dηn . (8.344)
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Figure 8.10: Discretization of a continuous function η(t). Upon discretization, a functional Φ
[
η(t)

]
becomes an

ordinary multivariable function Φ({ηj}).

In fact, for our purposes we will not need to know any details about the functional measure Dη; we will finesse
this delicate issue18. Consider the generating functional,

Z
[
J(t)

]
=

∫
Dη P [η] exp

( ∞∫

−∞

dt J(t) η(t)

)
. (8.345)

It is clear that

1

Z[J ]

δnZ[J ]

δJ(t1) · · · δJ(tn)

∣∣∣∣∣
J(t)=0

=
〈
η(t1) · · · η(tn)

〉
. (8.346)

The function J(t) is an arbitrary source function. We differentiate with respect to it in order to find the η-field
correlators.

Let’s compute the generating function for a class of distributions of the Gaussian form,

P [η] = exp

(
− 1

2Γ

∞∫

−∞

dt
(
τ2 η̇2 + η2

)
)

(8.347)

= exp

(
− 1

2Γ

∞∫

−∞

dω

2π

(
1 + ω2τ2

) ∣∣η̂(ω)
∣∣2
)
. (8.348)

Then Fourier transforming the source function J(t), it is easy to see that

Z[J ] = Z[0] · exp

(
Γ

2

∞∫

−∞

dω

2π

∣∣Ĵ(ω)
∣∣2

1 + ω2τ2

)
. (8.349)

Note that with η(t) ∈ R and J(t) ∈ R we have η∗(ω) = η(−ω) and J∗(ω) = J(−ω). Transforming back to real time,

18A discussion of measure for functional integrals is found in R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals.
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we have

Z[J ] = Z[0] · exp

(
1

2

∞∫

−∞

dt

∞∫

−∞

dt′ J(t)G(t − t′)J(t′)

)
, (8.350)

where

G(s) =
Γ

2τ
e−|s|/τ , Ĝ(ω) =

Γ

1 + ω2τ2
(8.351)

is the Green’s function, in real and Fourier space. Note that

∞∫

−∞

ds G(s) = Ĝ(0) = Γ . (8.352)

We can now compute

〈
η(t1) η(t2)

〉
= G(t1 − t2) (8.353)

〈
η(t1) η(t2) η(t3) η(t4)

〉
= G(t1 − t2)G(t3 − t4) +G(t1 − t3)G(t2 − t4) (8.354)

+G(t1 − t4)G(t2 − t3) .

The generalization is now easy to prove, and is known as Wick’s theorem:

〈
η(t1) · · · η(t2n)

〉
=

∑

contractions

G(ti1 − ti2) · · ·G(ti2n−1
− ti2n

) , (8.355)

where the sum is over all distinct contractions of the sequence 1-2 · · ·2n into products of pairs. How many terms
are there? Some simple combinatorics answers this question. Choose the index 1. There are (2n − 1) other time
indices with which it can be contracted. Now choose another index. There are (2n − 3) indices with which that
index can be contracted. And so on. We thus obtain

C(n) ≡ # of contractions

of 1-2-3 · · · 2n = (2n− 1)(2n− 3) · · · 3 · 1 =
(2n)!

2n n!
. (8.356)

8.13 Appendix III : General Linear Autonomous Inhomogeneous ODEs

We can also solve general autonomous linear inhomogeneous ODEs of the form

dnx

dtn
+ an−1

dn−1x

dtn−1
+ . . .+ a1

dx

dt
+ a0 x = ξ(t) . (8.357)

We can write this as
Lt x(t) = ξ(t) , (8.358)

where Lt is the nth order differential operator

Lt =
dn

dtn
+ an−1

dn−1

dtn−1
+ . . .+ a1

d

dt
+ a0 . (8.359)

The general solution to the inhomogeneous equation is given by

x(t) = xh(t) +

∞∫

−∞

dt′ G(t, t′) ξ(t′) , (8.360)
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where G(t, t′) is the Green’s function. Note that Lt xh(t) = 0. Thus, in order for eqns. 8.358 and 8.360 to be true,
we must have

Lt x(t) =

this vanishes︷ ︸︸ ︷
Lt xh(t) +

∞∫

−∞

dt′ Lt G(t, t′) ξ(t′) = ξ(t) , (8.361)

which means that
LtG(t, t′) = δ(t− t′) , (8.362)

where δ(t− t′) is the Dirac δ-function.

If the differential equation Lt x(t) = ξ(t) is defined over some finite or semi-infinite t interval with prescribed
boundary conditions on x(t) at the endpoints, then G(t, t′) will depend on t and t′ separately. For the case we are
now considering, let the interval be the entire real line t ∈ (−∞,∞). Then G(t, t′) = G(t − t′) is a function of the
single variable t− t′.

Note that Lt = L
(

d
dt

)
may be considered a function of the differential operator d

dt . If we now Fourier transform

the equation Lt x(t) = ξ(t), we obtain

∞∫

−∞

dt eiωt ξ(t) =

∞∫

−∞

dt eiωt

{
dn

dtn
+ an−1

dn−1

dtn−1
+ . . .+ a1

d

dt
+ a0

}
x(t)

=

∞∫

−∞

dt eiωt

{
(−iω)n + an−1 (−iω)n−1 + . . .+ a1 (−iω) + a0

}
x(t) .

(8.363)

Thus, if we define

L̂(ω) =

n∑

k=0

ak (−iω)k , (8.364)

then we have
L̂(ω) x̂(ω) = ξ̂(ω) , (8.365)

where an ≡ 1. According to the Fundamental Theorem of Algebra, the nth degree polynomial L̂(ω) may be
uniquely factored over the complex ω plane into a product over n roots:

L̂(ω) = (−i)n (ω − ω1)(ω − ω2) · · · (ω − ωn) . (8.366)

If the {ak} are all real, then
[
L̂(ω)

]∗
= L̂(−ω∗), hence if Ω is a root then so is −Ω∗. Thus, the roots appear in pairs

which are symmetric about the imaginary axis. I.e. if Ω = a+ ib is a root, then so is −Ω∗ = −a+ ib.

The general solution to the homogeneous equation is

xh(t) =

n∑

σ=1

Aσ e
−iωσt , (8.367)

which involves n arbitrary complex constants Ai. The susceptibility, or Green’s function in Fourier space, Ĝ(ω) is
then

Ĝ(ω) =
1

L̂(ω)
=

in

(ω − ω1)(ω − ω2) · · · (ω − ωn)
, (8.368)

Note that
[
Ĝ(ω)

]∗
= Ĝ(−ω), which is equivalent to the statement that G(t − t′) is a real function of its argument.

The general solution to the inhomogeneous equation is then

x(t) = xh(t) +

∞∫

−∞

dt′ G(t− t′) ξ(t′) , (8.369)
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where xh(t) is the solution to the homogeneous equation, i.e. with zero forcing, and where

G(t− t′) =

∞∫

−∞

dω

2π
e−iω(t−t′) Ĝ(ω)

= in
∞∫

−∞

dω

2π

e−iω(t−t′)

(ω − ω1)(ω − ω2) · · · (ω − ωn)

=

n∑

σ=1

e−iωσ(t−t′)

iL′(ωσ)
Θ(t− t′) ,

(8.370)

where we assume that Imωσ < 0 for all σ. This guarantees causality – the response x(t) to the influence ξ(t′) is
nonzero only for t > t′.

As an example, consider the familiar case

L̂(ω) = −ω2 − iγω + ω2
0

= −(ω − ω+) (ω − ω−) , (8.371)

with ω± = − i
2γ ± β, and β =

√
ω2

0 − 1
4γ

2 . This yields

L′(ω±) = ∓(ω+ − ω−) = ∓2β . (8.372)

Then according to equation 8.370,

G(s) =

{
e−iω+s

iL′(ω+)
+

e−iω
−

s

iL′(ω−)

}
Θ(s)

=

{
e−γs/2 e−iβs

−2iβ
+
e−γs/2 eiβs

2iβ

}
Θ(s)

= β−1 e−γs/2 sin(βs)Θ(s) .

(8.373)

Now let us evaluate the two-point correlation function
〈
x(t)x(t′)

〉
, assuming the noise is correlated according to〈

ξ(s) ξ(s′)
〉

= φ(s − s′). We assume t, t′ → ∞ so the transient contribution xh is negligible. We then have

〈
x(t)x(t′)

〉
=

∞∫

−∞

ds

∞∫

−∞

ds′ G(t− s)G(t′ − s′)
〈
ξ(s) ξ(s′)

〉

=

∞∫

−∞

dω

2π
φ̂(ω)

∣∣Ĝ(ω)
∣∣2 eiω(t−t′) .

(8.374)

Higher order ODEs

Note that any nth order ODE, of the general form

dnx

dtn
= F

(
x ,

dx

dt
, . . . ,

dn−1x

dtn−1

)
, (8.375)
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may be represented by the first order system ϕ̇ = V (ϕ). To see this, define ϕk = dk−1x/dtk−1, with k = 1, . . . , n.

Thus, for k < n we have ϕ̇k = ϕk+1, and ϕ̇n = F . In other words,

ϕ̇︷ ︸︸ ︷

d

dt




ϕ1
...

ϕn−1

ϕn


=

V (ϕ)︷ ︸︸ ︷


ϕ2
...
ϕn

F
(
ϕ1, . . . , ϕp

)


 . (8.376)

An inhomogeneous linear nth order ODE,

dnx

dtn
+ an−1

dn−1x

dtn−1
+ . . .+ a1

dx

dt
+ a0 x = ξ(t) (8.377)

may be written in matrix form, as

d

dt




ϕ1

ϕ2
...
ϕn


 =

Q︷ ︸︸ ︷


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

−a0 −a1 −a2 · · · −an−1







ϕ1

ϕ2
...
ϕn


+

ξ︷ ︸︸ ︷


0
0
...

ξ(t)


 . (8.378)

Thus,
ϕ̇ = Qϕ + ξ , (8.379)

and if the coefficients ck are time-independent, i.e. the ODE is autonomous.

For the homogeneous case where ξ(t) = 0, the solution is obtained by exponentiating the constant matrix Qt:

ϕ(t) = exp(Qt)ϕ(0) ; (8.380)

the exponential of a matrix may be given meaning by its Taylor series expansion. If the ODE is not autonomous,
then Q = Q(t) is time-dependent, and the solution is given by the path-ordered exponential,

ϕ(t) = P exp

{ t∫

0

dt′Q(t′)

}
ϕ(0) , (8.381)

where P is the path ordering operator which places earlier times to the right. As defined, the equation ϕ̇ = V (ϕ)

is autonomous, since the t-advance mapping gt depends only on t and on no other time variable. However, by
extending the phase space M ∋ ϕ from M → M × R, which is of dimension n + 1, one can describe arbitrary
time-dependent ODEs.

In general, path ordered exponentials are difficult to compute analytically. We will henceforth consider the au-
tonomous case where Q is a constant matrix in time. We will assume the matrix Q is real, but other than that it
has no helpful symmetries. We can however decompose it into left and right eigenvectors:

Qij =

n∑

σ=1

νσ Rσ,i Lσ,j . (8.382)

Or, in bra-ket notation, Q =
∑

σ νσ |Rσ〉〈Lσ|. The normalization condition we use is
〈
Lσ

∣∣Rσ′

〉
= δσσ′ , (8.383)
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where
{
νσ

}
are the eigenvalues of Q. The eigenvalues may be real or imaginary. Since the characteristic poly-

nomial P (ν) = det (ν I − Q) has real coefficients, we know that the eigenvalues of Q are either real or come in
complex conjugate pairs.

Consider, for example, the n = 2 system we studied earlier. Then

Q =

(
0 1

−ω2
0 −γ

)
. (8.384)

The eigenvalues are as before: ν± = − 1
2γ ±

√
1
4γ

2 − ω2
0 . The left and right eigenvectors are

L± =
±1

ν+ − ν−

(
−ν∓ 1

)
, R± =

(
1
ν±

)
. (8.385)

The utility of working in a left-right eigenbasis is apparent once we reflect upon the result

f(Q) =

n∑

σ=1

f(νσ)
∣∣Rσ

〉 〈
Lσ

∣∣ (8.386)

for any function f . Thus, the solution to the general autonomous homogeneous case is

∣∣ϕ(t)
〉

=
n∑

σ=1

eνσt
∣∣Rσ

〉 〈
Lσ

∣∣ϕ(0)
〉

(8.387)

ϕi(t) =

n∑

σ=1

eνσtRσ,i

n∑

j=1

Lσ,j ϕj(0) . (8.388)

If Re (νσ) ≤ 0 for all σ, then the initial conditions ϕ(0) are forgotten on time scales τσ = ν−1
σ . Physicality demands

that this is the case.

Now let’s consider the inhomogeneous case where ξ(t) 6= 0. We begin by recasting eqn. 8.379 in the form

d

dt

(
e−Qt ϕ

)
= e−Qt ξ(t) . (8.389)

We can integrate this directly:

ϕ(t) = eQt ϕ(0) +

t∫

0

ds eQ(t−s) ξ(s) . (8.390)

In component notation,

ϕi(t) =

n∑

σ=1

eνσtRσ,i

〈
Lσ

∣∣ϕ(0)
〉

+

n∑

σ=1

Rσ,i

t∫

0

ds eνσ(t−s)
〈
Lσ

∣∣ ξ(s)
〉
. (8.391)

Note that the first term on the RHS is the solution to the homogeneous equation, as must be the case when ξ(s) = 0.

The solution in eqn. 8.391 holds for general Q and ξ(s). For the particular form of Q and ξ(s) in eqn. 8.378, we
can proceed further. For starters, 〈Lσ|ξ(s)〉 = Lσ,n ξ(s). We can further exploit a special feature of the Q matrix to
analytically determine all its left and right eigenvectors. Applying Q to the right eigenvector |Rσ〉, we obtain

Rσ,j = νσ Rσ,j−1 (j > 1) . (8.392)
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We are free to choose Rσ,1 = 1 for all σ and defer the issue of normalization to the derivation of the left eigenvec-
tors. Thus, we obtain the pleasingly simple result,

Rσ,k = νk−1
σ . (8.393)

Applying Q to the left eigenvector 〈Lσ|, we obtain

−a0 Lσ,n = νσ Lσ,1 (8.394)

Lσ,j−1 − aj−1 Lσ,n = νσ Lσ,j (j > 1) . (8.395)

From these equations we may derive

Lσ,k = −
Lσ,n

νσ

k−1∑

j=0

aj ν
j−k−1
σ =

Lσ,n

νσ

n∑

j=k

aj ν
j−k−1
σ . (8.396)

The equality in the above equation is derived using the result P (νσ) =
∑n

j=0 aj ν
j
σ = 0. Recall also that an ≡ 1.

We now impose the normalization condition,

n∑

k=1

Lσ,k Rσ,k = 1 . (8.397)

This condition determines our last remaining unknown quantity (for a given σ), Lσ,p :

〈
Lσ

∣∣Rσ

〉
= Lσ,n

n∑

k=1

k ak ν
k−1
σ = P ′(νσ)Lσ,n , (8.398)

where P ′(ν) is the first derivative of the characteristic polynomial. Thus, we obtain another neat result,

Lσ,n =
1

P ′(νσ)
. (8.399)

Now let us evaluate the general two-point correlation function,

Cjj′ (t, t
′) ≡

〈
ϕj(t)ϕj′ (t

′)
〉
−
〈
ϕj(t)

〉 〈
ϕj′ (t

′)
〉
. (8.400)

We write

〈
ξ(s) ξ(s′)

〉
= φ(s− s′) =

∞∫

−∞

dω

2π
φ̂(ω) e−iω(s−s′) . (8.401)

When φ̂(ω) is constant, we have
〈
ξ(s) ξ(s′)

〉
= φ̂(t) δ(s − s′). This is the case of so-called white noise, when all

frequencies contribute equally. The more general case when φ̂(ω) is frequency-dependent is known as colored
noise. Appealing to eqn. 8.391, we have

Cjj′ (t, t
′) =

∑

σ,σ′

νj−1
σ

P ′(νσ )

νj′−1
σ′

P ′(νσ′ )

t∫

0

ds eνσ(t−s)

t′∫

0

ds′ eνσ′ (t′−s′) φ(s− s′) (8.402)

=
∑

σ,σ′

νj−1
σ

P ′(νσ )

νj′−1
σ′

P ′(νσ′ )

∞∫

−∞

dω

2π

φ̂(ω) (e−iωt − eνσt)(eiωt′ − eνσ′ t′)

(ω − iνσ)(ω + iνσ′)
. (8.403)

In the limit t, t′ → ∞, assuming Re (νσ) < 0 for all σ (i.e. no diffusion), the exponentials eνσt and eνσ′ t′ may be
neglected, and we then have

Cjj′ (t, t
′) =

∑

σ,σ′

νj−1
σ

P ′(νσ )

νj′−1
σ′

P ′(νσ′)

∞∫

−∞

dω

2π

φ̂(ω) e−iω(t−t′)

(ω − iνσ)(ω + iνσ′)
. (8.404)



56 CHAPTER 8. NONEQUILIBRIUM PHENOMENA

8.14 Appendix IV : Correlations in the Langevin formalism

As shown above, integrating the Langevin equation ṗ+ γp = F + η(t) yields

p(t) = p(0) e−γt +
F

γ

(
1 − e−γt

)
+

t∫

0

ds η(s) eγ(s−t) . (8.405)

. Thus, the momentum autocorrelator is

〈
p(t) p(t′)

〉
−
〈
p(t)

〉〈
p(t′)

〉
=

t∫

0

ds

t′∫

0

ds′ eγ(s−t) eγ(s′−t′)
〈
η(s) η(s′)

〉

= Γ e−γ(t+t′)

tmin∫

0

ds e2γs = Mk
B
T
(
e−γ|t−t′| − e−γ(t+t′)

)
,

(8.406)

where

tmin = min(t, t′) =

{
t if t < t′

t′ if t′ < t
(8.407)

is the lesser of t and t′. Here we have used the result

t∫

0

ds

t′∫

0

ds′ eγ(s+s′) δ(s− s′) =

tmin∫

0

ds

tmin∫

0

ds′ eγ(s+s′) δ(s− s′)

=

tmin∫

0

ds e2γs =
1

2γ

(
e2γtmin − 1

)
.

(8.408)

One way to intuitively understand this result is as follows. The double integral over s and s′ is over a rectangle
of dimensions t × t′. Since the δ-function can only be satisfied when s = s′, there can be no contribution to the
integral from regions where s > t′ or s′ > t. Thus, the only contributions can arise from integration over the
square of dimensions tmin × tmin. Note also

t+ t′ − 2 min(t, t′) = |t− t′| . (8.409)

Let’s now compute the position x(t). We have

x(t) = x(0) +
1

M

t∫

0

ds p(s)

= x(0) +

t∫

0

ds

[(
v(0) − F

γM

)
e−γs +

F

γM

]
+

1

M

t∫

0

ds

s∫

0

ds1 η(s1) e
γ(s1−s)

=
〈
x(t)

〉
+

1

M

t∫

0

ds

s∫

0

ds1 η(s1) e
γ(s1−s) ,

(8.410)
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Figure 8.11: Regions for some of the double integrals encountered in the text.

with v = p/M . Since
〈
η(t)

〉
= 0, we have

〈
x(t)

〉
= x(0) +

t∫

0

ds

[(
v(0) − F

γM

)
e−γs +

F

γM

]

= x(0) +
Ft

γM
+

1

γ

(
v(0) − F

γM

)(
1 − e−γt

)
.

(8.411)

Note that for γt ≪ 1 we have
〈
x(t)

〉
= x(0) + v(0) t + 1

2M
−1Ft2 + O(t3), as is appropriate for ballistic particles

moving under the influence of a constant force. This long time limit of course agrees with our earlier evaluation
for the terminal velocity, v∞ =

〈
p(∞)

〉
/M = F/γM .

We next compute the position autocorrelation:

〈
x(t)x(t′)

〉
−
〈
x(t)

〉〈
x(t′)

〉
=

1

M2

t∫

0

ds

t′∫

0

ds′ e−γ(s+s′)

s∫

0

ds1

s′∫

0

ds′1 e
γ(s1+s2)

〈
η(s1) η(s2)

〉

=
Γ

2γM2

t∫

0

ds

t′∫

0

ds′
(
e−γ|s−s′| − e−γ(s+s′)

)
(8.412)

We have to be careful in computing the double integral of the first term in brackets on the RHS. We can assume,
without loss of generality, that t ≥ t′. Then

t∫

0

ds

t′∫

0

ds′ e−γ|s−s′| =

t′∫

0

ds′ eγs′

t∫

s′

ds e−γs +

t′∫

0

ds′ e−γs′

s′∫

0

ds eγs

= 2γ−1t′ + γ−2
(
e−γt + e−γt′ − 1 − e−γ(t−t′)

)
.

(8.413)

We then find, for t > t′,

〈
x(t)x(t′)

〉
−
〈
x(t)

〉〈
x(t′)

〉
=

2k
B
T

γM
t′ +

k
B
T

γ2M

(
2e−γt + 2e−γt′ − 2 − e−γ(t−t′) − e−γ(t+t′)

)
. (8.414)
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In particular, the equal time autocorrelator is

〈
x2(t)

〉
−
〈
x(t)

〉2
=

2k
B
T

γM
t+

k
B
T

γ2M

(
4e−γt − 3 − e−2γt

)
. (8.415)

We see that for long times 〈
x2(t)

〉
−
〈
x(t)

〉2 ∼ 2Dt , (8.416)

where D = k
B
T/γM is the diffusion constant.

8.15 Appendix V : Kramers-Krönig Relations

Suppose χ̂(ω) ≡ Ĝ(ω) is analytic in the UHP19. Then for all ν, we must have

∞∫

−∞

dν

2π

χ̂(ν)

ν − ω + iǫ
= 0 , (8.417)

where ǫ is a positive infinitesimal. The reason is simple: just close the contour in the UHP, assuming χ̂(ω) vanishes
sufficiently rapidly that Jordan’s lemma can be applied. Clearly this is an extremely weak restriction on χ̂(ω),
given the fact that the denominator already causes the integrand to vanish as |ω|−1.

Let us examine the function
1

ν − ω + iǫ
=

ν − ω

(ν − ω)2 + ǫ2
− iǫ

(ν − ω)2 + ǫ2
. (8.418)

which we have separated into real and imaginary parts. Under an integral sign, the first term, in the limit ǫ → 0,
is equivalent to taking a principal part of the integral. That is, for any function F (ν) which is regular at ν = ω,

lim
ǫ→0

∞∫

−∞

dν

2π

ν − ω

(ν − ω)2 + ǫ2
F (ν) ≡ ℘

∞∫

−∞

dν

2π

F (ν)

ν − ω
. (8.419)

The principal part symbol ℘ means that the singularity at ν = ω is elided, either by smoothing out the function
1/(ν − ǫ) as above, or by simply cutting out a region of integration of width ǫ on either side of ν = ω.

The imaginary part is more interesting. Let us write

h(u) ≡ ǫ

u2 + ǫ2
. (8.420)

For |u| ≫ ǫ, h(u) ≃ ǫ/u2, which vanishes as ǫ → 0. For u = 0, h(0) = 1/ǫ which diverges as ǫ → 0. Thus, h(u) has
a huge peak at u = 0 and rapidly decays to 0 as one moves off the peak in either direction a distance greater that
ǫ. Finally, note that

∞∫

−∞

du h(u) = π , (8.421)

a result which itself is easy to show using contour integration. Putting it all together, this tells us that

lim
ǫ→0

ǫ

u2 + ǫ2
= πδ(u) . (8.422)

19In this section, we use the notation χ̂(ω) for the susceptibility, rather than Ĝ(ω)
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Thus, for positive infinitesimal ǫ,
1

u± iǫ
=
℘

u
∓ iπδ(u) , (8.423)

a most useful result.

We now return to our initial result 8.417, and we separate χ̂(ω) into real and imaginary parts:

χ̂(ω) = χ̂′(ω) + iχ̂′′(ω) . (8.424)

(In this equation, the primes do not indicate differentiation with respect to argument.) We therefore have, for
every real value of ω,

0 =

∞∫

−∞

dν

2π

[
χ′(ν) + iχ′′(ν)

] [ ℘

ν − ω
− iπδ(ν − ω)

]
. (8.425)

Taking the real and imaginary parts of this equation, we derive the Kramers-Krönig relations:

χ′(ω) = +℘

∞∫

−∞

dν

π

χ̂′′(ν)

ν − ω
(8.426)

χ′′(ω) = −℘
∞∫

−∞

dν

π

χ̂′(ν)

ν − ω
. (8.427)


