
Physics 2a, Dec 1, lecture 30

⋆Reading: chapter 13.

• Finish gravity, mention black holes. Escape velocity v =
√

2GM/R = c gives

RS = 2GM/c2. This is the place of no return. Einstein’s theory of general relativity

shows, among other things, that stronger gravity makes clocks run slower. Atomic clocks

are super accurate and can measure this even for clocks differing in height above the earth

by a meter or so. The GPS system is so tuned and accurate that it needs to account for

this effect!

• Let’s now start the study of oscillations. Periodic motion in time is given by x(t) =

A cos(ωt + φ). Here A is the amplitude, ω is the angular frequency, and φ is an initial

condition for the phase. Note that ω = 2πf = 2π/T . Example: object rotating in a circle

of radius R = A, with x(t) the x-component. As we’ll now discuss, this same x(t) describes

the position of a mass on a spring.

For a mass on a spring, F = −kx (Hooke’s law), so F = ma gives −kx = md
2
x

dt2
. This

equation is solved by

x(t) = A cos(ωt + φ), (1)

where ω =
√

k/m. The position of a mass on a spring is just like the x-component of

a particle rotating in a circle! The amplitude and phase A and φ are two constants of

integration, specified by the initial position and velocity of the mass. These are analogous

to the constants x0 and v0 in x = 1

2
at2 + v0t + x0, in the case of constant acceleration.

Here we have x0 = x(t = 0) = A cos φ and v0 = v(t = 0) = −ωA sin φ.

• We saw before that a spring’s force is conservative, with F = −
d

dx
U(x), with poten-

tial energy U = 1

2
kx2. There is a point of stable equilibrium at x = 0. For a more general

potential U(x), expanding (in a Taylor’s series) near a point of stable equilibrium will

always give something that’s approximately quadratic for small displacements (ignoring

higher terms in the Taylor’s series), so a mass on a spring behaves exactly like ANY small

oscillations around a point of stable equilibrium.

Example: vibrations of molecules, U ≈ U0(
(

R0

r

)12

− 2
(

R0

r

)6

) has a minimum at

r = R0, and expanding r = R0 + x gives a SHO with k = 72U0/R2

0
.

• Let’s check that the energy of the oscillating mass on a spring is indeed constant

(as it should be, since we haven’t yet put in any friction):

E = 1

2
mẋ2 + 1

2
kx2 = 1

2
mω2A2(sin2(ωt + φ) + cos2(ωt + φ)) = 1

2
mω2A2.

1



Where we plugged in the solution (1). So E is indeed a time-independent constant, good.

As the mass oscillates, its energy goes back and forth between kinetic and potential energy.

The maximum velocity is ωA.
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