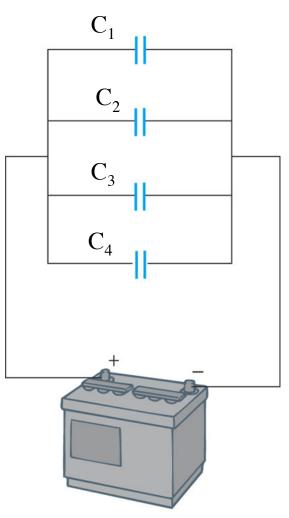

Connecting Capacitors in Series and in Parallel

Goal: find "equivalent" capacitance of a single capacitor (simplifies circuit diagrams and makes it easier to calculate circuit properties)

Note that both capacitors are held are same potential difference ΔV :

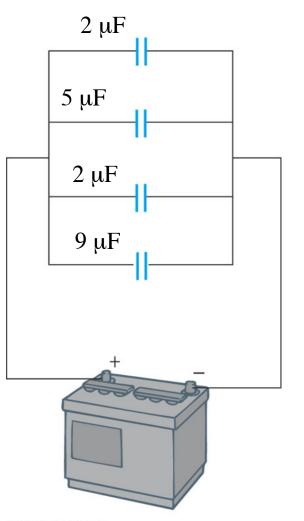

 $\Delta V_1 = \Delta V_2 = \Delta V$

Total charge $Q = Q_1 + Q_2$

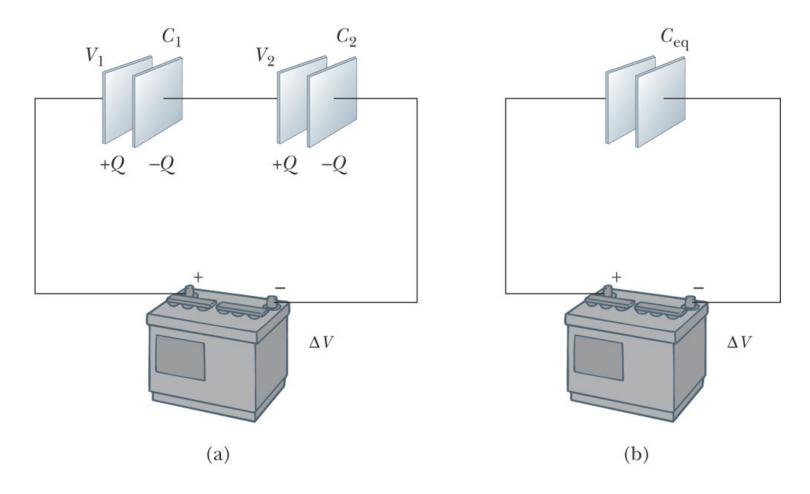
 $Q = C_1 \Delta V + C_2 \Delta V$

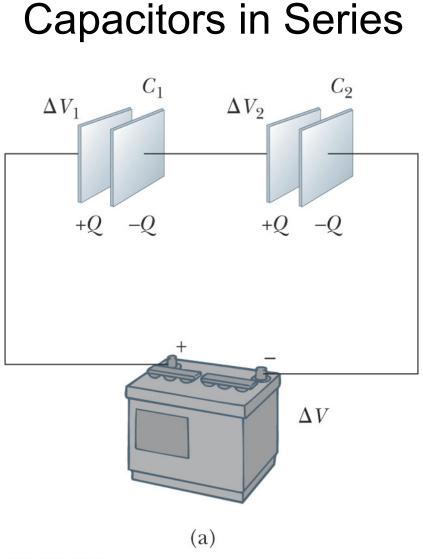
$$C_{eq} = Q/\Delta V = (C_1 \Delta V + C_2 \Delta V)/\Delta V$$

$$\mathbf{C}_{eq} = \mathbf{C}_1 + \mathbf{C}_2$$


For N capacitors in parallel:

$$C_{eq} = C_1 + C_2 + C_3 + \dots + C_N$$


 C_{eq} bigger than any individual C


akin to having larger area:

 $Area(C_{eq}) = Area1 + Area2+...$

Example: Calculate C_{eq}

Note both capacitors' left plates have equal positive charge, +Q (and right plates each have -Q) Also: $\Delta V = \Delta V_1 + \Delta V_2$

$$\Delta V = Q/C_1 + Q/C_2$$

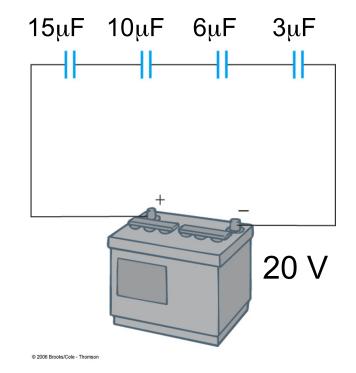
$$C_{eq} = Q/\Delta V$$

$$1/C_{eq} = \Delta V/Q$$

$$1/C_{eq} = (Q/C_1 + Q/C_2)/Q$$

For N capacitors in series: $1/C_{eq} = 1/C_1 + 1/C_2 + 1/C_3 + + 1/C_N$

C_{eq} smaller than any individual C


Example: Find C_{eq} .

 $1/C_{eq} =$ $1/(15\mu F)+1/(10\mu F)+1/(6\mu F)+$ $1/(3\mu F) = 0.667/\mu F$

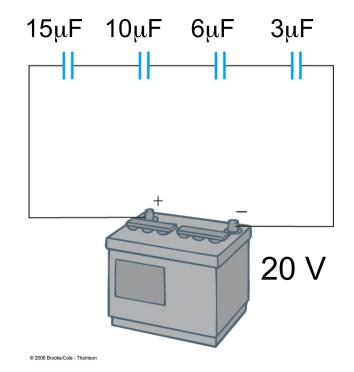
$$C_{eq} = 1.5 \ \mu F$$

Find Q on each capacitor:

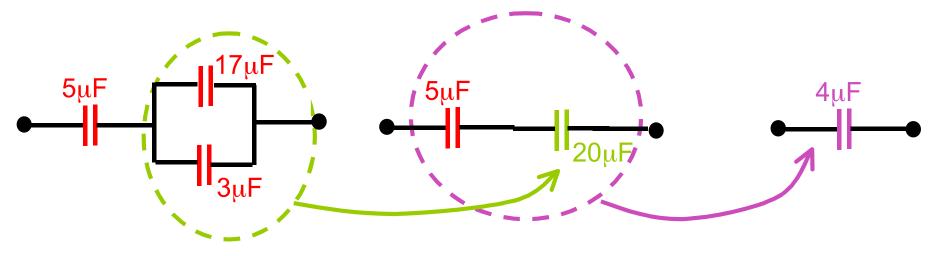
$$Q = C_{eq} \Delta V =$$

(1.5x10⁻⁶F)(20V)= 30µC

Find the voltage drop across each capacitor:


$$\Delta V_1 = Q/C_1 = 30 \mu C/15 \mu F = 2V$$

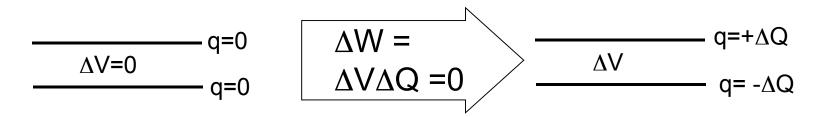
$$\Delta V_2 = Q/C_2 = 30 \mu C/10 \mu F = 3V$$


$$\Delta V_3 = Q/C_3 = 30 \mu C/6 \mu F = 5 V$$

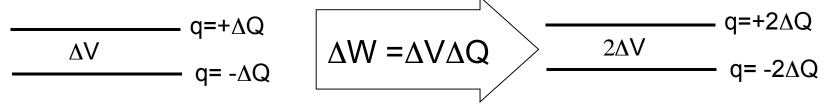
$$\Delta V_4 = Q/C_4 = 30 \mu C/3 \mu F = 10 V$$

Notice that $\Delta V_1 + \Delta V_2 + \Delta V_3 + \Delta V_4 = \Delta V$

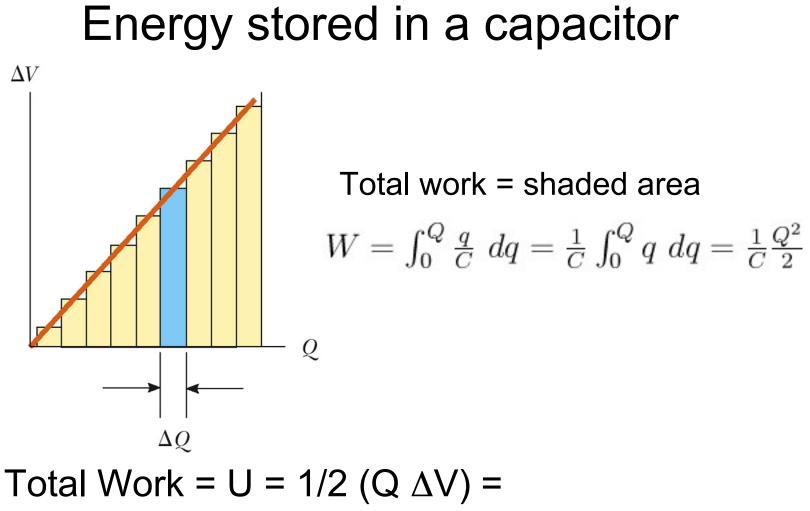
Capacitors in Parallel AND in SERIES



Energy stored in a capacitor


How much work does it take to charge up a capacitor?

Start with neutral plates, transfer a tiny amount of charge, ΔQ : Amount of work you need to do will equal the amount of charge times the potential difference currently across the plates


Energy stored in a capacitor

Once one ΔQ has been transferred, ΔV has increased, so additional work is needed to transfer a second amount of ΔQ :

To transfer a third ΔQ , you'll need to do work $\Delta W = (2\Delta V)\Delta Q....$

 $1/2 C(\Delta V)^2 = Q^2/(2C)$

Energy density

•Energy stored can also be expressed in terms of the energy density (energy per unit volume) $u_{\rm E} = 1/2 \epsilon_0 E^2$

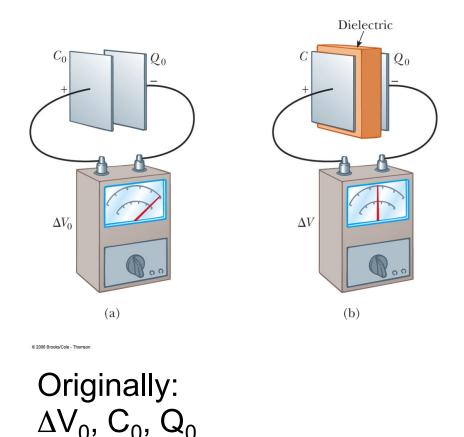
Defibrillators

A fully charged defibrillator contains U = 1.2 kJ of energy stored in a capacitor with C = 1.1×10^{-4} F. Find the voltage needed to store this amount of energy.

 $U = 1/2 C (\Delta V)^2$

$$\Delta V = \sqrt{2 U / C} = \sqrt{(2)(1200 J) / 1.1 \times 10^{-4} F} = 4670 V$$

In a discharge through a patient, 600 J of electrical energy are delivered in 2.5 ms. What's the average power delivered during this time?


```
Avg. Power = Energy/time = 600J/0.0025sec = 2.4x10^5 W
```

Recap: when d is halved, what happens to the energy stored?

d → d/2, with battery attached: ΔV =same; E = $\Delta V/d \rightarrow 2E$; Q→2Q; C→2C; U→2U d → d/2, after battery removed: Q=same; E= σ/ϵ_0 =same; ΔV =Ed → $\Delta V/2$; C = Q/ $\Delta V = \frac{\epsilon_0 A}{d} \rightarrow 2C$; U→U/2.

Dielectrics

Insulators placed in the gap to increase capacitance by a factor κ : ceramic, paper, glass, plastic, water, teflon,...

When you insert a dielectric (no battery attached), the voltage is observed to drop

 $\Delta V = \Delta V_0 / \kappa$

 κ always > 1 (κ =1 for vacuum)

Q₀ remains the same (charge can't flow anywhere)

$$C = Q/\Delta V = Q/(\Delta V_0/\kappa) = \kappa Q/\Delta V_0$$

$$\mathbf{C} = \mathbf{\kappa} \mathbf{C}_0$$

Dielectrics

TABLE 20.1

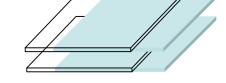
Dielectric Constants and Dielectric Strengths of Various Materials at Room Temperature

Material	Dielectric Constant κ	Dielectric Strength (V/m)
Vacuum	$1.000\ 00$	_
Air	$1.000\ 59$	$3 imes 10^6$
Bakelite®	4.9	24×10^6
Fused quartz	3.78	$8 imes 10^6$
Pyrex [®] glass	5.6	14×10^6
Polystyrene	2.56	24×10^6
Teflon [®]	2.1	$60 imes 10^6$
Neoprene rubber	6.7	12×10^{6}
Nylon	3.4	14×10^{6}
Paper	3.7	16×10^6
Strontium titanate	233	$8 imes 10^6$
Water	80	
Silicone oil	2.5	$15 imes 10^6$

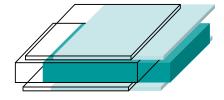
Dielectrics

 $C = \kappa \varepsilon_0 (A/d)$

For any given d, there's a maximum electric field that can occur inside the dielectric above which conduction will occur.


"Dielectric strength"

For air ($\kappa = 1.00059$), this is E = $3x10^6$ V/m


Permittivity of a dielectric

Consider a capacitor not connected to a battery: $E_0 = \Delta V_0/d$

Add dielectric $E = \Delta V/d = (\Delta V/\kappa)/d$

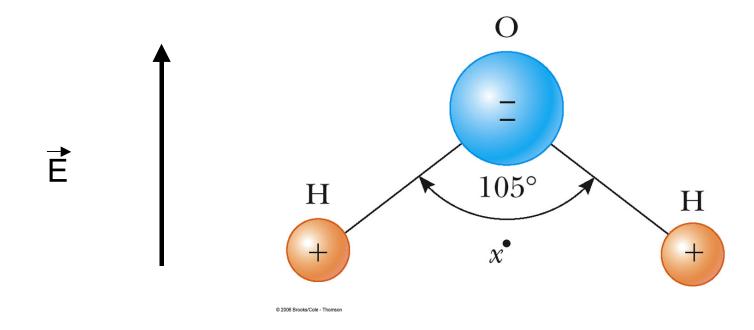
 $E = E_0/\kappa$

For a capac., $E_o = \sigma/\epsilon_0$

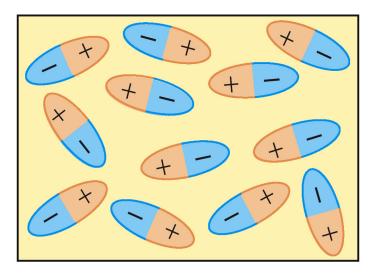
$$\mathsf{E} = (\sigma/\varepsilon_0)/\kappa = \sigma/\varepsilon$$

 $\varepsilon = \kappa \varepsilon_0$

Permittivity is increased compared to vacuum

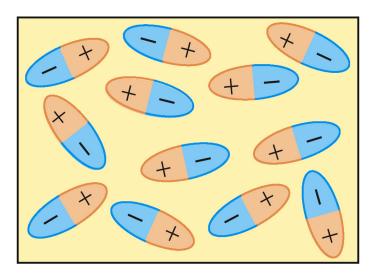

Example:

You have a capacitor with plates of area = 20 cm^2 , separated by a 1mm-thick layer of teflon. Find the capacitance and the maximum voltage & charge that can be placed on the capacitor.

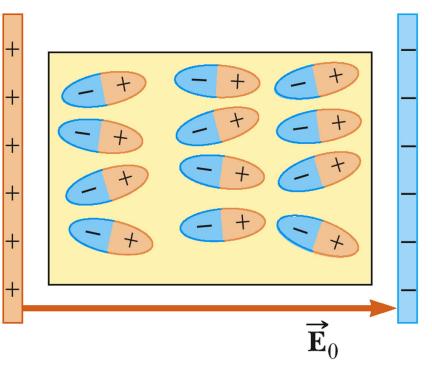

Find κ from Table 20.1: For teflon, κ =2.1

Diel. Strength is also found in Table 20.1: $E_{max} = 6x10^7 \text{ V/m}$ $\Delta V_{max} = E_{max} d = (6x10^7 \text{ V/m})(0.001 \text{ m})=6x10^4 \text{ V}$ $Q_{max} = C\Delta V_{max} = (37x10^{-12} \text{ F})(6x10^4 \text{ V})= 2.2x10^6 \text{ C}$

Relies on POLARIZATION: In some molecules, there's a separation between average positions of + and – charges

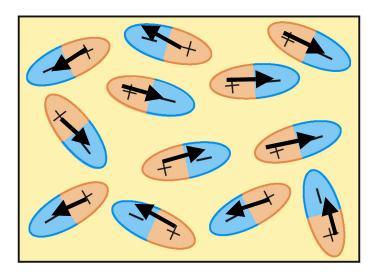


No external E-field: Molecules are randomly oriented

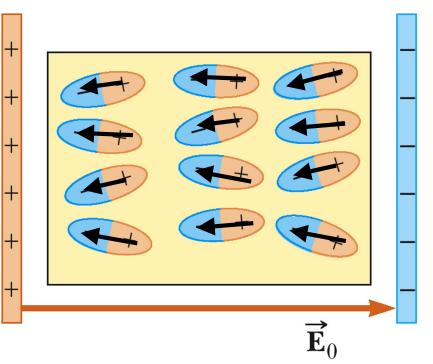


No external E-field: Molecules are randomly oriented

Apply external E-field: molecules orient themselves to partially align with the field



© 2005 Brooks/Cole - Thomson



No external E-field: Molecules are randomly oriented

Apply external E-field: molecules orient themselves to partially align with the field

© 2005 Brooks/Cole - Thomson

Dielectric produces its own E-field (E_{induced})

 $E_{net} = E_0 - E_{induced}$

Negative poles of molecules attract more +Q onto positive plate, etc.... so capacitor can hold more charge

(and if a battery's attached, more charge CAN be added)

Dielectric Example 1

Example: You have a capacitor with capacitance C_0 , charge it up via a battery so the charge is +/- Q_0 , with ΔV_0 across the plates and E_0 inside. Initially $U_0 = 1/2C_0(\Delta V_0)^2 = Q_0^2/2C_0$. Then, disconnect the battery, and then insert a dielectric with dielectric constant κ .

What are
$$C_f$$
, U_f , Q_f , E_f , and ΔV_f ?

Isolated system, so $Q_f = Q_0$.

$$\Delta V_{f} = \Delta V_{0}/\kappa$$
$$E_{f} = E_{0}/\kappa$$
$$C_{f} = Q_{f}/\Delta V_{f} = \kappa C_{0}$$
$$U_{f} = 1/2 C_{f} (\Delta V_{f})^{2} = U_{0}/\kappa$$

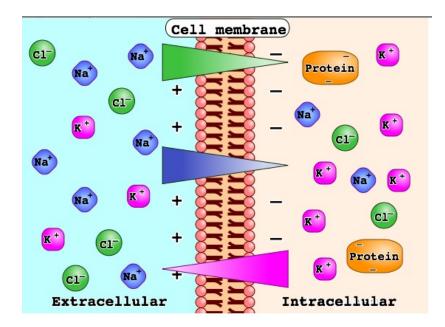
Dielectric Example 2

Example: You have a capacitor with capacitance C_0 , charge it up via a battery so the charge is +/- Q_0 , with ΔV_0 across the plates and E_0 inside. Initially $U_0 = 1/2C_0(\Delta V_0)^2 = Q_0^2/2C_0$. Then, while keeping the connection to the battery, insert a dielectric with dielectric constant κ .

What are C_f, U_f, Q_f, E_f, and ΔV_f ?

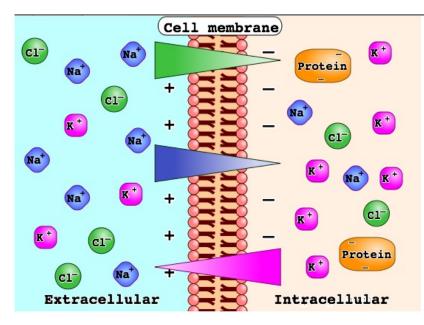
Battery maintains a constant potential diff.: $\Delta V_f = \Delta V_0$

$$\begin{split} & \mathsf{E}_{\mathsf{f}} = \mathsf{E}_0 \; (\mathsf{E}_0 = \sigma_0 / \varepsilon_0; \; \mathsf{E}_{\mathsf{f}} = \sigma_{\mathsf{f}} / \varepsilon = \kappa \sigma_0 / \kappa \varepsilon_0) \\ & \mathsf{Q}_{\mathsf{f}} = \kappa \mathsf{Q}_0. \\ & \mathsf{C}_{\mathsf{f}} = \mathsf{Q}_{\mathsf{f}} / \Delta \mathsf{V}_{\mathsf{f}} = \kappa \mathsf{C}_0 \\ & \mathsf{U}_{\mathsf{f}} = 1/2 \; \mathsf{C}_{\mathsf{f}} \; (\Delta \mathsf{V}_{\mathsf{f}})^2 = \kappa \mathsf{U}_0 \end{split}$$


Capacitance of Biological Membranes

Neurons:

Outside: Na⁺, Cl⁻


Inside: K⁺, neg. organics

No electric pulse: equal amounts of Na⁺ and K⁺ on either side

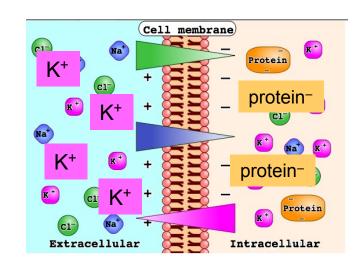
Capacitance of Biological Membranes

Electric pulse: K⁺ ions leave the semi-permeable membrane and migrate outside (for every 3 K⁺'s that leave, 2 Na⁺'s enter). Neg. proteins are too big to go anywhere.

Creates net positive charge outside, net negative inside: ΔV can be as high as ~ 0.05 – 0.10V

Capacitance of Biological Membranes

Typical d is a few nm.


Typical Capacitance is ~ 2 μ F per square cm of membrane.

Estimate κ , assuming d = 3nm:

$$C = \varepsilon_0 \kappa(A/d) \rightarrow C/A = \varepsilon_0 \kappa/d$$

 $\kappa = (C/A)d / \epsilon_0 = (2x10^{-6} \text{ F/cm}^2)(10^4 \text{ cm}^2/\text{m}^2) (3x10^{-9} \text{ m})/(8.85x10^{-12} \text{ C}^2/\text{Nm}^2) = 6.8$

Compare to the teflon (κ =2.1) capacitor, where C/A was 37pF/20cm² = 1.9pF/cm². Here we have much smaller d (and higher κ).

