PHYSICS 110A : CLASSICAL MECHANICS
HW 2 SOLUTIONS

(1) Taylor 5.2

Here is a sketch of the potential with A =1, R =1, and S = 1. From the plot we can see
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Figure 1: Plot for problem 1.

the minimum of the potential will be at r = R. We can also find this by setting the first
derivative of U (r) equal to zero.
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U (r)= g€ <e 1) =0.

This will be zero when r = R. We will call this value r.

So now we expand U (r) as a Taylor series around the point rg:

1
U(ro+z)=U(ro) +U (ro)z + 5U" (ro) 2 + ...



Right away we know the second term will be zero because U’ (r¢) is defined to be zero.
Finding the second derivative we have:
24 (p_, —r
U (r) = ﬁe(R )8 <2€(R /S 1) .

Plugging in 19 = R we have:

2A
U (7“0) = ?
So for small values of = we can say:
124
For this potential the k& constant is é—‘;‘.

(2) Taylor 5.13

Similar to problem 1 we have a potential and want to first take the derivative and set it
equal to zero to find the potential’s minimum:

1 R
U)=Uy | =—-N=)=0.
(r) 0 <R 7”2)
Setting this equal to zero we find the minimum is ryp = AR.
Again we want to express the potential as a Taylor series:
1
U(ro+x)=U(ro)+ U (r0)x + gU" (ro) 2 + ...

Our second derivative of the potential is as follows:

_ 2UpN’R

r3
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And we can write the potential as:

Our expression for the angular frequency is:
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(3) Taylor 5.38

As in example 5.3 the equation of motion for a driven damped linear oscillator is:
z (t) = Acos (wt — &) + e P [By cos (wit) + By sin (wit)] . (1)

Forusw=1, 3=.1, and w1 = y/Jw? — 32 = .995.
From equations 5.64 and 5.65 from the text we have:
A=2and d=m/2.

We have two boundary conditions: x¢ = 0 and vy = 6.

Our job is to calculate the given constants in the equation of motion and then plot the
equation of motion.

From equation (1) with ¢ = 0 we find:

0= Acos(—7/2) + [Bj cos (0) + Basin (0)] .

By =0.

The velocity function can be found be taking the time derivative of the position function
as so:
v (t) = —wAsin (wt — 8) + e P By (wy cos (wit) — Bsin (wit)).

(Where I have dropped the B; terms.)

From this at ¢t = 0 we have:

vg = —wAsin (—m/2) + Ba (w1 cos (0) — Fsin (0)) .

And this can be reduced to:

vg — wA
By= ——.
w1

Plugging in numbers we get Bs = 4 leading to an equation of motion:

x (t) = 2cos (t — 7/2) + e~ " sin (.995¢). (2)



10

30 40

60

Figure 2: Plot for problem 4.
The function is plotted in figure 2.

(4) Taylor 5.45

(a) First we are to find the time average of the rate P (t) or

T

(P (1) = i/dtP ().

0
The rate for which a force does work is F'v. So for this force we will have:

(P (1)) = 24

= = /dt cos (wt) sin (wt — 0)

0

70

Where v (t) = —wAsin (wt — §). (Note: we get rid of the transient part of the velocity.)



Substituting here we have:

F(]Q.)A r

(P (1)) =~ / dt (sin (—5) + sin (2wt — 5)).

0

The time average of a sinusoidal function is zero so we are left with:

P () = = O;Asin (©).

Note: here we take advantage of sin (—¢§) = —sin (6).

Now we must substitute for sin (§). From figure 5.14 on page 184 in the text we see:
26w
V(s —w2) 4 apu

And comparing with equation 5.64 from the text we see:

sin (0) =

_ 2mAfw
=R

sin (0)

Remember fy = Fy/m. Putting this together we find:
(P (t)) = mBw?A?.
(b) Now similarly we will do the same for the resistive force which is Fies = 2mfv.

We can find this as the second term (the friction term) in equation 5.24 from the text,
and from equation 5.26 b = 26m.

So we will have P (t) = 2mBv? and we have:

T

/dt sin? (wt — 6) .

0

B 2mBw? A2
N T

(P (1))

But:

1/ 1

/dtsim2 (wt—90) ==.

T 2
0

This is true for the square of any sinusoidal function (you may want to check this by sub-
stituting for the cos? (wt — §) as in part (a)).

So we are left with:
(P (t)) = mPw?A?.
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Figure 3: Plot for problem 6.

(c) Writing this out as a function of w we have:

p _ mﬁwag '
(P (1)) (07— o2 + 4577

Plotting this for 8 = 1,m = 1, and wg = 4 we see the maximum is at wg as expected. You
may also find this by maximizing the function.

(5) Fall 2007 Midterm #1 Question #1
A particle of mass m moves in the one-dimensional potential

Uz) = =2 (* — a?)? . (3)

(a) Sketch U(zx). Identify the location(s) of any local minima and/or maxima, and be sure
that your sketch shows the proper behavior as x — 4o0.
[15 points]

Solution : Clearly the minima lie at = +a and there is a local maximum at z = 0.
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Figure 4: Sketch of the double well potential U(z) = (Up/a*)(2? — a?)?, here with distances
in units of a, and associated phase curves. The separatrix is the phase curve which runs
through the origin. Shown in red is the phase curve for U = % Uy, consisting of two deformed
ellipses. For U = 2 Uy, the phase curve is connected, lying outside the separatrix.

(b) Sketch a representative set of phase curves. Be sure to sketch any separatrices which
exist, and identify their energies. Also sketch all the phase curves for motions with total
energy I = %Uo' Do the same for £ = 2Uj,.

[15 points]

Solution : See Fig. 4 for the phase curves. Clearly U(4+a) = 0 is the minimum of the
potential, and U(0) = U, is the local maximum and the energy of the separatrix. Thus,
E= % U, cuts through the potential in both wells, and the phase curves at this energy form
two disjoint sets. For EJ < U, there are four turning points, at

E E
Ty o= —a\[l+ Uo Ty, =—ay/l— Uo



and

E E
$2’<:a 1-— EO s a’,’2’>:a 1+ FO

For E = 2U,, the energy is above that of the separatrix, and there are only two turning
points, z and Ty The phase curve is then connected.

(c) The phase space dynamics are written as ' = V(°), where * = <§> Find the upper and

lower components of the vector field V.

[10 points]
L Cib)-Contow) 0

(d) Derive and expression for the period T' of the motion when the system exhibits small
oscillations about a potential minimum.
[10 points]

Solution :

Solution : Set x = +a + n and Taylor expand:
4Uy

Ulka+n) = —3 0"+ 00" . (5)

Equating this with %k n?, we have the effective spring constant k = 8U,/ a?, and the small

oscillation frequency
k 8Uy
0=\ = Vina? - (6)

The period is 27 /w.



(6) Fall 2007 Midterm #1 Question #2

An R-L-C circuit is shown in fig. 5. The resistive element is a light bulb. The inductance
is L = 400 uH; the capacitance is C' = 1 uF; the resistance is R = 32). The voltage
V (t) oscillates sinusoidally, with V (t) = V| cos(wt), where V[, = 4 V. In this problem, you
may neglect all transients; we are interested in the late time, steady state operation of this
circuit. Recall the relevant MKS units:

10=1V.s/C , 1F=1C/V , 1H=1V-s*/C.
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Figure 5: An R-L-C circuit in which the resistive element is a light bulb.

(a) Is this circuit underdamped or overdamped?
[10 points]

Solution : We have

wy = (LO)™ Y2 =5x10*s7! | pB= % =4 x107s71.

Thus, wi > $% and the circuit is underdamped.

(b) Suppose the bulb will only emit light when the average power dissipated by the bulb is
greater than a threshold P, = % W. For fixed V;; = 4V, find the frequency range for w over
which the bulb emits light. Recall that the instantaneous power dissipated by a resistor is
Py(t) = I*(t)R. (Average this over a cycle to get the average power dissipated.)

[20 points]

Solution : The charge on the capacitor plate obeys the ODE

Q

L@+RQ+6:V(t).



The solution is Vi
Q(t) = Qo (1) + Alw) 7 cos (wt — 6(w)) ,
with

Alw) = [(w% —w?)? 4+ 452w2} s , Olw) = tan_1< 22,6’w > .

wg — w?
Thus, ignoring the transients, the power dissipated by the bulb is
Palt) = QX R
2

= w?A%(w) VEQR sin® (wt — §(w)) -

Averaging over a period, we have (sin?(wt —d)) = 1, so

VE)QR _ VfOQ 452(«02
202 2R (W —w?)2+4B2w2

(Pp)=w’A*(w)

Now V#/2R = 1 W. So P, = aV§@/2R, with a = §. We then set (Pg) = P,;,, whence
(1—a)-46%° = a (Wi —w?)?.

The solutions are

w:iq/l;aﬁ—l—\/(l;a)@—i—wg: (3v/3 + V2) x 10005~ .

(c) Compare the expressions for the instantaneous power dissipated by the voltage source,
P, (t), and the power dissipated by the resistor Pp(t) = I?(t)R. If P, (t) # Pg(t), where
does the power extra power go or come from? What can you say about the averages of Py,

and Pp(t) over a cycle? Explain your answer.
[20 points]

Solution : The instantaneous power dissipated by the voltage source is
Vo .
P,(t)=V(#)I(t)=-wA T sin(wt — 9) cos(wt)
A0 (s' § — sin(2wt 5))
=wA — (sind — sin(2wt — .
2L

As we have seen, the power dissipated by the bulb is

2

Pp(t) = w?A? VEQR sin¥wt — 6) .

These two quantities are not identical, but they do have identical time averages over one
cycle:
‘/02

_ Y0 432,242
=R 46° w* A% (w) .

(Py(t)) = (Pg(t))

10



Energy conservation means

Py (t) = Pg(t) + E(t) )

where o )

L
@
2 2C

is the energy in the inductor and capacitor. Since Q(t) is periodic, the average of E over a

E(t)

cycle must vanish, which guarantees ( Py, (t)) = ( Pg(t)).
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