CHAPTTEHR

A Review

one. The physics described in this book depends on classical concepts

and techniques described in an earlier course in physics. You have taken
such a course, one that uses calculus, but while you have not forgotten every-
thing, in all likelihood you have not perfectly retained all the material presented
in that course. Our aim in this chapter is to provide you with a kind of road map
of the most important material from your introductory course. We emphasize
those things that are important in a course in modern physics. We also remind
you of some of the history of this material, because we think it is useful for you
to be aware of the way things have developed, not just the results.

We do assume that you have retained some things. In particular, we do not
review the mathematics that was necessary for your first physics course. Thus,
you are expected to know that vectors are not the same as scalars, that the ac-
celeration is a vector given by the second derivative of the displacement, and
that partial derivatives may enter into some equations, as well as what the area
integral in Gauss’ law means.

Our review is no substitute for a first course. You learn physics by under-
standing the material well enough to solve problems, and we make no attempt
to do examples or present problems in this chapter. That will come later. The ma-
terial we present here is so brief that it is at best a reminder; if you want details,
consult the text from your first physics course, which is a far better reference.

S cience is an edifice, with the latest brick almost always laid on an earlier

1-1 Newton’s Laws

Isaac Newton was one of the singular geniuses in all human history. How-
ever, he had predecessors in the development of physics—Copernicus, Galileo,
and Kepler come to mind—and contemporaries, of whom Christian Huygens
and Newton'’s great rival Robert Hooke were perhaps the most illustrious.
Gottfried Leibniz, also a contemporary of Newton, independently invented the
differential calculus, something that Newton would never admit. While New-
ton was aware of such earlier work, it was rare that he acknowledged it. But he
transformed it in such a way that it would have been all but unrecognizable to
his predecessors. Newton created what we think of as theoretical physics—the
idea of describing nature in terms of equations. The gravitational force was the
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inspiration for this process: In order to solve the problem of gravitation, Newton
invented the differential and integral calculus and introduced the three basic
laws of mechanics that we know today as Newton’s laws. These three laws are
true foundation stones of physics.

Newton'’s second law describes the motion of an object of mass m that is
acted on by a set of forces that add vectorially to a net force:

F.. = ma. (1-1)
Here, a is the acceleration of the object. For a given net force, @ is inversely pro-
portional to the mass—the smaller the mass, the larger is the acceleration and
vice versa. The meaning of this mass, more properly termed the inertial mass,
is provided by Newton's second law itself. In classical physics, mass is con-
served, although it can be spread around when an object breaks up or con-
joined when an object is formed by amalgamation. We sometimes see the second
law written in the form

. dp
net — dti

where the momentum of the object is P = mV. This form allows us to account
for an object with a changing mass.

In order for Newton’s second law to be useful, we must know something
about the forces produced in different circumstances; that is, we must have
force laws. When we do know about the forces, Newton's second law becomes
a dynamical equation—an equation of motion—that allows us to predict the
motion of the object in question. Some of the forces you will have studied are
gravity, electrical and magnetic forces, and contact forces such as friction and
the tension in a rope. An important example is the spring force, governed by the
law which states that, when a spring is stretched or compressed by an amount
x from its equilibrium position, it exerts a force given by —kx on a mass attached
to its end. Here, k is the spring constant, a quantity that varies from spring to
spring. This particular force law is known as Hooke’s law. A great deal of in-
formation is packed into Hooke’s law when it is taken in conjunction with New-
ton’s second law. The minus sign in Hooke’s law tells us that the force is a
restoring force, tending to move the mass back to the equilibrium position of
the spring. When an object of a given mass is attached to the end of a spring and
no other forces act, then the second law becomes a differential equation for the
position of the mass, relating the position to its second derivative, the acceler-
ation. In this context, we refer to the second law as the equation of motion of the
spring, and the equation can be solved—meaning that we can find the function
of time that represents the position. We will actually solve an equation of mo-
tion given by Hooke’s law shortly. The importance of this particular case is that
it applies to nearly any situation in which there is stable equilibrium—that is,
a situation in which a slight displacement of an object from an equilibrium po-
sition produces a net force that pulls the object back to that position. But no
matter how important this example is, it is only an example, one that fits into
the framework of Newton’s second law along with all the other examples we
can imagine.

Newton'’s first law is superficially’ a special case of the second law:

(1-2)

If fmt = 6, the motion is uniform. (1-3)

1We use this word because the first law is really more than a special case—it has to do with the ex-
istence of inertial frames—reference frames in which all forces have identifiable sources.




Here, when we say the motion is uniform, we mean that the acceleration is
zero, or that the velocity is constant. This includes the case where the object in
question is at rest. The novelty in Newton's first law is that it asserts that the
role of a force is only to accelerate an object. Galileo’s predecessors—especially
Aristotle and all those who continued to quote him—assumed that it took a
force to keep an object in motion. They could not imagine a frictionless world
in which an object would simply keep going once it got started. This law is
often used to deduce the presence, magnitude, and direction of an unknown
force. For example, if a falling object reaches a constant terminal velocity, then
we can deduce the magnitude of the drag force on it if we know that of the
force of gravity that acts on it. Of greater significance, the first law tells us that
there is no way of distinguishing between a “uniformly moving” and a “sta-
tionary” observer.

Gravity

We have said that when a given net force acts on an object, the acceleration of
the object is inversely proportional to its mass. But we seem to have one con-
spicuous exception: the case in which a body falls free of all influence but that
of gravity. One of the common errors of pre-Galilean thinking was the idea that
heavier (more massive) objects fall more quickly (have larger accelerations)
than lighter ones—something that contradicts the more careful observation that
all objects falling under the (sole) influence of gravitation at the surface of the
Earth do so with the same acceleration. Galileo claimed to have dropped objects
from the Leaning Tower of Pisa to determine whether they all had the same
acceleration. If he had actually done that, he would have found out that air
drag spoils the experiment. As you might have learned in your introductory
course, you can eliminate air drag by creating a laboratory vacuum in which a
feather falls as rapidly as a penny. What, then, has happened to Newton'’s sec-
ond law, which seems to imply that, because @ = F /m, the acceleration does de-
pend on the mass? The only way that the second law can be consistent is for the
force law for gravitation to be proportional to the mass itself. In this way, the
mass cancels from both sides of Newton’s second law, and the acceleration is
independent of the mass.

Hooke’s Law

Let us examine how the equation expressing Newton’s second law can be
solved by reviewing an important example: the spring force, F = —kx
(°Fig. 1-1a). Since we are working in one dimension, vectorial aspects do not
matter, and we can dispense with vector notation in the equation of motion:
dx

kx = m Fra (1-4)
This equation relates a position, a function of time, to its second derivative. Not
just any function can satisfy the equation for all time. Finding the function or
functions that can do this is what we mean by solving the differential equation.
The first derivative of the sine function is the cosine, and the derivative of the
cosine is the sine again, but with a minus sign. Thus, the solution takes the form

x(t) = Asin(wt + ¢). (1-5)
The quantities A, the amplitude of the motion, and ¢, the phase, are determined

by initial conditions; for example, specifying the initial position and velocity
would determine A and ¢. The quantity w, on the other hand, is determined by
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I The lack of distinction
between observers moving
relative to each other with
constant velocities will play a
crucial role in the development
of the theory of relativity; see
Chapters 2 and 3.

I When we discuss Einstein’s
theory of gravitation at the end
of the book, we will see that
this cancellation involves some
very deep physics.
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e Figure 1-1 (a) The force due
to an idealized spring, which is
proportional to the deviation of
the length of the spring from its
equilibrium length, leads to sim-
ple harmonic motion. (b) Plots
of displacement, velocity, and
acceleration as functions of time
of amass at the end of a spring.

Frictionless surface

® Figure 1-2 The force flz ex-
erted on block 1 by block 2 is
equal and opposite to the force
F;; exerted on block 2 by
block 1.

Eq. (1-4) itself; we say that the dynamics determines w. We find @ simply by in-
sisting that Eq. (1-5) satisfy Eq. (1-4), with the result that

o = Vk/m. (1-6)

The quantity w, which is termed the angular frequency, is closely related to the
repeat time, or period T, of the solution. The period and the frequency f of the re-
peating motion are related by

1
T=-, 1-7
[ (1-7)
where f = w/27. Note, finally, that by taking the first and second time deriv-
atives of the position, Eq. (1-5), we find the velocity and acceleration, respec-
tively (eFig. 1-1b).

The last of Newton's three laws states that forces act between pairs of ob-
jects. That is, a force F;Z1 acts on object 2 due to object 1, then a force Fy, acts on
object 1 due to object 2. For example, when a hand exerts a force on a piano key,
the piano key exerts a force on the hand, or when Earth exerts a force on a ten-
nis ball, the tennis ball exerts a force on Earth. Newton’s third law states that
these pairs of forces are represented by equal and opposite vectors (¢Fig. 1-2):

Fp, = —Fy. (1-8)

This law is sometimes called the law of equal action and reaction. Of course,
that is somewhat of a misnomer if you think of the word “reaction” as a de-
scription of the motion of the objects on which forces act. When a less massive
object interacts with a more massive one, the forces may be equal and opposite,
but Newton’s second law ensures us that the motions of the two objects will be
quite different. The tennis ball reacts visibly when the force due to Earth acts
on it, but the motion of Earth due to the tennis ball is not visible even to our best
instruments.

The third law may be restated in terms of momentum. Imagine that you
have two objects labeled 1 and 2, isolated from the outside world and inter-
acting with each other. From Eq. (1-2), the force on object 1 is the rate of change
of its momentum, p;; the force on object 2 is the rate of change of p,. Then
Eq. (1-8) becomes

%=—%, of E(Pl‘*’f”z):o
Thus, the vector P; + P, is constant in time, a great simplification when New-
ton’s laws are applied to what may otherwise be a complicated interaction be-
tween two objects. This result extends to more than one interacting object,
taking the form

f

P, = a constant vector, (1-9)

where Eot is the total momentum. We refer to Eq. (1-9) as the law of conserva-
tion of momentum. It may be taken as an alternative to Newton’s third law.
Conservation laws play a central role in modern ideas about the operation of
physical laws.

1-2 Work, Energy, and the Conservation
of Energy

Energy is an extremely useful and fundamental quantity. The concept of ener-
gy was developed by early 19th-century engineers studying the operation of
steam engines. Today, we can solve Newton's law numerically with computers



1-2  Work, Energy, and the Conservation of Energy

if we know the forces involved. However, this was not true in the 18th and 19th
centuries, and the search for simplifications led to a whole world of ideas en-
compassed under the general term “energy.”

Consider a constant net force F acting in one dimension on an object of
mass 7. In this case the motion is entirely determined, with the velocity v chang-
ing linearly with time; thatis v o t. If we eliminate the time and find the speed
as a function of the distance moved, x, we obtain the relation

FX(x—x)= % muy — % mu?, (1-10)
where the initial point of the motion is labeled with the subscript i and the final
point with the subscript f. It is customary to call the quantity mv?/2 the kinetic
energy K. Then the right side of Eq. (1-10) is the change in kinetic energy of the
object. The left side is referred to as the work W done by the force on the object.
When many forces act, each can perform work, and it is the work done by the
net force, or the net work, that enters into Eq. (1-10). The work can be positive
or negative, according to whether the kinetic energy increases or decreases. The
sign is implicit in the definition of work and is determined by whether the force
lies parallel [F and X; — x; have the same sign] or antiparallel [F and Ry %
have the opposite sign] to the displacement in this one-dimensional example.

Of course, not every force is constant, and not every force acts only in one
dimension. The more general form of Eq. (1-10) consists in finding the defini-
tion of work suitable for the more general form of the net force. As far as forces
that vary in space are concerned, we note that for a sufficiently small interval,
the force can be regarded as constant, and we can sum the constant forces over
all the small intervals. This is in fact, the definition of an integral, so that, for a
one-dimensional nonconstant force (a force whose magnitude might vary), the
work is defined as

W = / “Eie) i (1-11)

For a force that acts in more than one dimension, or, what is the same thing, for
motion in more than one dimension, only the component of the force that lies
along the motion changes the speed, and hence the kinetic energy, and we pick
out this component through the dot, or scalar, product of the force vector and
the displacement vector. The result of including both effects is that a suitable de-
finition of the work done on an object as it moves from position ¥, to ¥, is

?f_>
W= f F .4t (1-12)

With these definitions, Eq. (1-10) remains
Woet = AK = Ky — K. (1-13)

This equation is known as the work-energy theorem.

The work-energy theorem is useful if you are not interested in the time de-
pendence of the motion. The equation can be applied to any force, although
whether it is easy to use depends on whether the integration in Eq. (1-11) or
Eq. (1-12) can be performed analytically. However, the work-energy theorem
can be recast into another form for so-called conservative forces. Then it takes
on a significance beyond convenience. A conservative force is a force for which
the integration that expresses the work, Eq. (1-12), is independent of the path
between the initial and final points. In «Fig. 1-3, we show initial and final points
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Point

e Figure 1-3 When the work
done by a force that acts on an
object which moves from point
1 to a second point 2 is the
same for any two paths between
the points, the force is said to
be conservative.

together with two paths, A and B, between them. A conservative force is a force
for which values of the work done over the two paths—and indeed, over any
paths connecting the two points—are identical. For such forces, the work de-
pends only on the two endpoints:

[7Far= 113 - 562

We get the simplest form of the work—energy theorem if, instead of the function
f(¥), we use its negative,

N
= / F-df = U(7) - u). (1-14)
7
With this notation, we can recast the work-energy theorem as
U() + K = U(¥) + K, (1-15)
This equation is in the form of a conservation law for the total energy, defined by
E=UF) + K, (1-16)

where the potential energy—also called the energy of position—is defined by
U = - / F - df + U(f). (1-17)

U(%)) is a constant that drops out of Eq. (1-14). The potential energy is thus de-
fined only up to this constant, which h plays no role in the connection between the
force and the potential energy, viz., F = —VU(#), a relation discussed shortly.

A conservation principle such as the law of conservation of energy is both
a central principle of physical laws and a powerful problem-solving tool. En-
ergy conservation states that there is no change in the numerical value of E in
the course of time. This principle is not affected by the presence of an arbitrary
constant in the definition of U, namely, its value at an arbitrary initial point ¥,
in the integral. That point and the value of U there can be chosen for conve-
nience. We usually express this arbitrariness by setting Ul equal to zero at some
convenient point; we will see some examples later. Another thing to keep in
mind is that energy is a scalar, not a vector, quantity. Of course, scalar quanti-
ties have signs. Thus, while K is positive, U and hence E can perfectly well be
negative; again, only changes in conserved quantities matter.

What forces are conservative? In other words, what forces are associated
with a potential energy, so that we can express the work—energy theorem as the
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Axis of
rotation

e Figure 1-6 The cause of ro-
tation is torque, specified by a
cross product (vector product)
of the position vector of the
point of application of a force
with the force itself. Here, too,
a right-hand rule is involved.

equations for linear motion—Newton's second law—involve the linear accel-
eration. There is an equivalent to mass, the rotational inertia I, and an equiv-
alent to force, the torque 7, and the relation is the same, namely,
i

dt’

where L is the angular momentum. The torque is expressed with respect to an
axis and is given by

7=1Id =

(1-23)

7=%xF, (1-24)
where T is a vector running perpendicularly from the axis of rotation to the
point where the force is applied (*Fig. 1-6). The rotational inertia I is associat-
ed with the way the mass of the body is distributed. Like all the other rota-
tional quantities that appear here, it is defined with respect to the axis of
rotation. If we imagine breaking up the object in question, whose total mass is
M, into many discrete portions of mass Am;, then

I= Y (Am)?, (1-25)

1

where 7, is the distance from the mass point labeled i to the axis of rotation. In
the limit of a continuously distributed mass, the sum becomes an integration.

The work-energy theorem for rotational motion takes a form that extends
the parallels we see in the dynamical equations. The work done in rotating a
rigid body through an angle A6 = 0, — 0;is

o
W= / 746, (1-26)
b;
and the kinetic energy of an object rotating with angular speed o is
K= % Ie? (1-27)

The relation between these quantities is the familiar work-energy theorem,
Eq. (1-13).

There is, in fact, nothing special about the axis of rotation: No physical ef-
fect depends on the choice of axis, any more than any physical effect depends
on choice of origin for Newton’s laws. Any axis can be employed as a refer-
ence, and the preceding relations remain true as long as the same axis is used
for all of the quantities employed.

The quantities just described can be extended to nonrigid objects. To do so,
we need only sum over them for a set of point objects that make up a suitable
description of the entire system. We can also describe the rotational quantities
with respect to an origin, not an axis. If ¥ describes the vector from this origin
to a given point object, then the angular momentum of the object is

L=%xp, (1-28)

and the torque 7 remains as in Eq. (1-24) and describes the rate of change of K
The angular momentum of a system is the sum of the angular momenta of the
system’s individual mass components. In particular, if there is no external
torque acting on the system, and if the internal forces are central—directed
along the lines between the internal masses—then Newton’s third law assures
us that the angular momentum of the system is conserved.

The study of rotations is a study of extended objects—that is, of mass dis-
tributions, rigid or otherwise. This study reveals the presence of a location with



special properties within a mass distribution, the center of mass. If our object
has a total mass M, the center of mass is given by

Zmii"i
_
_*M g

Note the important property that when a net external force acts on an extend-
ed object, the object’s center of mass moves as a point mass with mass M ac-
cording to Newton’s second law:

—

Fnet, external — MK (1—30)
where A’ = d?R/df*. This is a great simplification.

R (1-29)

1-4 Elastic Media and Waves

The collections of interacting masses that make up matter are capable of a type
of collective motion that we refer to as waves. Waves are some of the most ob-
vious features of our physical environment; they are also pervasive, if less ob-
vious, in light, in sound, and within all types of matter. Because light waves
have some special features—in particular, they do not require matter in which
to propagate—in this section we refer to all types of waves except light or other
electromagnetic waves. (See Section 1-8.)

Internal forces that resemble the force in Hooke’s law lead to wave motion
within materials. This is not so unlikely as if may sound: It really means only
that there is a stable equilibrium and that the internal forces tend to lead back
to that equilibrium. For example, the pressure in air is a stable quantity. A fluc-
tuation within the air such that the pressure varies from its average is subject
to forces that tend to bring it back to the average, and a small deformation with-
in many materials is subject to forces that tend to remove the deformation. Let
us imagine that there is some quantity & that represents a variation from equi-
librium. This quantity could be the pressure in a gas, or a displacement from
an equilibrium position along a string or within a material. The quantity 4 varies
throughout the medium, as well as with time, so that i = h(x, t). Here, we have
let the position within the medium be represented by the single variable x, as
if the medium were one dimensional, but the position could more generally be
a multidimensional position vector ¥. The variable / satisfies what is called the
wave equation,

2 2

1o aan

dx v° ot
This equation is a direct result of applying Newton’s second law to the elastic
medium. The equation has the important property that it is linear: If we have
two solutions to the equation, then the sum of those two solutions is also a so-
lution. This is sometimes referred to as the superposition principle. The quan-
tity v, whose interpretation is the wave speed, is a function of the internal
restoring forces and of an inertial factor that describes how nimbly the medi-
um responds to the forces:

restoring force factor
v = (1-32)

inertial factor

For example, the speed of sound waves in a solid of mass density p is given by
the expression V'Y/p, where Y is Young’s modulus, a quantity that determines

14  Elastic Media and Waves

9



e Figure 1-7 A harmonic
wave has a repetition length
called the wavelength A and a
maximum value of the variable
it describes called the
amplitude. The time necessary
for one wavelength to pass a
given point x is the period. The
wavelength and period are
connected by the wave speed.

e Figure 1-8 In harmonic
standing waves, the changing
variable oscillates in place.
Points at which the variable
vanishes are fixed in space at
all times and are called nodes.

how the solid responds to a stretching force. Analogously, the speed of a wave
moving along a string of mass per unit length p1 under a tension T is VT /1.

The solution of Eq. (1-31) is given by h(x, £) = g(x — vt), where g is any
function of the combination x — vt. We call the wave denoted by h a traveling
wave. It represents some shape described by the function g moving in the
x-direction with (positive or negative) velocity v. The wave could be a pulse of
some kind; alternatively, it could repeat regularly. In particular, if g takes a si-
nusoidal form, # is known as a harmonic wave:

h(x,t) = Hsin[k(x — ot)] = Hsin(kx — ot).

The parameters that appear here have simple interpretations. The amplitude
of the wave—its maximum departure from equilibrium—is H, while k and
specify the repeat length and repeat time, respectively, for the wave. In partic-
ular, if the repeat length is the wavelength A, the repeat time is the period T, and
the repeat frequency is f = 1/T, then k, termed the wave number, and o,
termed the angular frequency, are related to A and T by

(1-33)

2 2T
w = 2mf T an 5 (1-34)
The wave speed links all these quantities:
v = Af. (1-35)

sFig. 1-7 illustrates some of these points. Harmonic waves are of special impor-
tance because of Fourier’s theorem, which states that any wave can be broken
down into (or constructed using) harmonic waves of different frequencies. In
some media, the wave speed is a function of frequency. Such media are said to be
dispersive; the treatment of waves in dispersive media is more complicated.
The wave equation has a second type of solution, corresponding to stand-
ing waves. This type of solution separates the time and space dependence:

h(x,t) = Hsin(kx + @)cos(wt + 8). (1-36)

These waves oscillate in place, in contrast to traveling waves, which represent
a moving disturbance (+Fig. 1-8). Note the presence of nodes, places where
there is no disturbance. Here, the frequency f = w/2m is determined by the
wave equation. But what determines the wavelength? The answer is that the
wavelength is determined by boundary conditions. For example, a common
boundary condition is that the endpoints of a string of length L on which the
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waves are set up must be fixed; that is, the quantity & must vanish at the two
ends,x = Oand x = L. In this case, = 0and kL = nsr; thatis, A = 2L/n, where
n is a positive integer. These conditions correspond to a half-integer number of
wavelengths fitting the string, as in *Fig. 1-9. The appearance of integers is
often cited as unique to quantum physics; here, we see that it is perfectly pos-
sible in a classical context. It is actually typical of wavelike phenomena, and
these phenomena are in many ways common to classical and quantum physics.

We have not been very specific about the characteristic wave variable %,
which is generally a displacement from equilibrium. That is because a large
variety of physical variables satisfy wave equations, depending on the medji-
um. There are two main categories of waves: transverse and longitudinal. This
distinction depends on whether the displacement is perpendicular to, or along,
the direction of propagation of the wave itself. As an example of a medium
that supports both types of wave, we could take a long spring such as a
Slinky™. If the spring is stretched along the x-direction, then an initial pulse
formed by moving one end of the spring in the y-direction will form a propa-
gating transverse wave, as in *Fig. 1-10a. If, instead, an initial pulse is formed
by pushing the spring along its length, in the x-direction, then this pulse will
propagate as a longitudinal wave, as in *Fig. 1-10b. Perhaps the most familiar
longitudinal wave is that of sound, which is a wave in which the density of
the air varies about its equilibrium value in the direction of the propagation of
the sound wave.

Propagating transverse wave pulse
—
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MR

Propagating compression
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I We discuss quantum
numbers throughout this book.

l‘ n=2
n=3

[
x=0 x=1L

* Figure 1-9. For a harmonic
standing wave on a string with
boundary conditions that fix
the ends, only certain wave-
lengths are allowed. This is a
“quantization” phenomenon.

* Figure 1-10  Waves can be
characterized according to
whether the disturbance is

(a) perpendicular to the direc-
tion of the propagation, in
which case the wave is trans-
verse, or (b) along the direction
of the propagation, in which
case the wave is longitudinal.
Sometimes a combination of
the two occurs. The two types
of waves are illustrated here by
a Slinky™.



e Figure 1-11 How waves
reflect depends on boundary
conditions. (a) If one end of a
string is fixed, an incoming
pulse will be inverted on
reflection. (b) If the reflecting

end is free, the reflected pulse

will remain upright.

Power and Energy in Waves

In a wave, a disturbance propagates from one place to another; there is no over-
all motion of the medium. Nevertheless, a traveling wave can transport the en-
ergy that is put into the formation of a pulse or into a periodic wave from one
end of a medium to another. The harmonic wave of Eq. (1-33) propagating on
a string of mass density u provides the essential features: The power—that is,
the rate at which energy is delivered through a unit area perpendicular to the
direction of wave propagation—in this wave is

P = puvw*H?cos® (kx — ot).

The energy density in the harmonic wave is the power divided by the wave
speed v. The power and energy density are themselves traveling waves, and
each of these quantities is proportional to the amplitude squared and the fre-
quency squared.

Reflection and Refraction

Waves that reach boundaries between different media reflect back into the medi-
um upon which they were incident and refract into the medium on the far side
of the boundary. (We also refer to the refracted wave as a transmitted wave.)
For waves on one-dimensional systems such as strings, we need only note the
possibility of a phase change at the boundary. Thus, a wave that has reflected
from a boundary at which the string is fixed undergoes a phase change of 180°;
that is, the wave is inverted (sFig. 1-11a). If the string is free at the end, the
wave is reflected upright, without a phase change (¢Fig. 1-11b). In these cases
no wave is transmitted, but we can arrange for one by connecting the string to
another string of different mass density. In a two- or three-dimensional system
(such as light), we have angles of reflection and refraction to deal with. In any
case, the amplitudes of reflected and refracted waves are constrained by the
requirement that energy be conserved.
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Coherence, Interference, and Diffraction

The superposition principle tells us that any sum of harmonic waves is also an
acceptable solution of the wave equation. We have already remarked that this
principle relates pulses to harmonic waves. In addition, a standing wave of the
type in Eq. (1-36) is a superposition of two traveling waves like those of
Eg. (1-33), one moving to the right and one moving to the left. Now, when two
waves superpose, interesting things can happen. If, at a certain point in space
and time, there are two waves with h-values that are equal and opposite, then
at that point the net displacement cancels; we say the waves interfere destruc-
tively. If, in contrast, we have two waves with h-values that are equal and of
the same sign, then at that point in space the two waves interfere constructive-
ly. An interference pattern between two or more waves can be set up through-
out space and time, and this pattern can be regular if the two waves are
themselves regular. We say that harmonic waves are coherent if there is a def-
inite relation between their frequencies and phases. The possibility of coherent
waves can be realized in various ways. Let us enumerate several of the typical
patterns that result.

® Beats. Imagine two interfering waves of slightly different angular frequen-
cies w; and w, propagating in the same medium, so that they have the same
wave speed. (For sound, this can easily be arranged with two slightly dif-
ferent tuning forks.) Then if they each have the same amplitude, their alge-
braic sum takes the form

HSI'II(klx — (x)lf) + Hsm(kzx = ﬂ)2t)

= 2H sin(Kx — Ot)cos (6—k x — Q(E t),
2 2
where K is the average of k; and k,, Q is the average of w; and w,, 6k is the
difference of k; and k,, and 8w is the difference of w; and w,. The interfering
waves produce the product of two waves, one with a very small wave num-
ber 6k/2—that is, a very long wavelength—and a very small angular fre-
quency. The part with the small frequency is termed the beat.

* Interference patterns in space with two sources. *Figure 1-12 shows one way to
set up an interference pattern in space. A single wave is sent through two slits
that act as two sources of the same frequency. A point P is located at differ-
ent distances from the two slits, and hence there is a definite phase difference
between the waves at that point. The two waves have the same amplitude
and wavelength A, but because one has to travel farther than the other to get
to point P, they arrive at P with different phases. Depending on the differ-
ence in path length, AL, the two waves could interfere constructively or de-
structively. The condition for constructive interference is that Al = nA, while
for destructive interference, the condition is AL = (n + 1/2)A. In each case,
n is either zero or a positive or negative integer. To find how these condi-
tions correspond to a particular set of points in space, an exercise in geom-
etry is necessary. For instance, «Fig. 1-12 shows a situation in which the
distance D from the two sources to an observing screen is much larger than
the distance d between the sources. In that case, the light rays leaving from
51 and S, are nearly parallel, and we have § ~ 6. Thus, the difference be-
tween the two path lengths is given approximately by d sin 6, and the con-
dition for tully constructive interference becomes d sing = nA, where # is
any integer, positive or negative. A pattern of maxima and minima is the re-
sult. Another way to get two coherent sources is through the use of split



e Figure 1-12 An arrange-
ment for producing an interfer-
ence pattern. The two aper-
tures produce two coherent
waves whose disturbances sys-
tematically add or subtract on a
screen, here assumed to be dis-
tant compared with the separa-
tion between the sources. The
waves could be sound, light, or
water waves in a ripple tank.
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beams that are partially reflected and partially transmitted and then are re-
joined by means of mirrors.

o Gratings involve spatial interference patterns similar to those produced by
two sources. However, in a grating, N sources are used, and if N is very
large, it has the effect of greatly sharpening the interference pattern. Gratings
are particularly important when the wave involved is light. (See Section 1-8.)

Christian Huygens demonstrated how a wave front is due to interference.
He pictured the propagation of a wave front as a continual regeneration of
“wavelets” along the front. The straight-line propagation of the front is due to
the constructive interference of the wavelets all along the front. If, on the other
hand, the front is broken by, say, the presence of a barrier, then the constructive
interference is no longer present on the far side of the barrier, and the wave
front will bend around the edge of the barrier. This phenomenon is known as
diffraction.

The Doppler Shift

This phenomenon describes how the movement of the receiver or emitter of a
wave or the medium itself affects the frequency or wavelength of the wave.
The Doppler shift plays an important role in relativity; accordingly, we shall re-
serve treatment of it in some detail in that discussion.



1-7 Electricity and Magnetism

The story of the discovery of the laws of electromagnetism, in the nineteenth
century, is one of the glorious tales of science. A full recounting of this history
would take us too far afield; but if you are not familiar with it, we cannot rec-
ommend too strongly that you take the trouble to read about it.*

Electrical forces occur between stationary electric charges; magnetic forces
occur between moving electric charges, or, equivalently, electric currents. If
one maps the forces acting on a tiny test charge in the presence of a given dis-
tribution of charges, moving or otherwise, and then divides out the effects of
the test charge itself, one is left with something that depends on the distribu-



tion. As the test charge moves through space, it traces the electric and mag-
netic fields that are due to the original distribution. These fields are vectors—
the forces have di_{ections—that have a value at every point in space. We label
the electric field E(¥) and the magnetic field B(¥). As a first approximation,
electric charges are associated with electric fields, and electric currents are as-
sociated with magnetic fields. (The direction of positive current is, by definition,
the direction of the movement of positive charges. We emphasize, however,
that you can have a current in an electrically neutral situation, as long as equal
amounts of positive and negative charge are present—all that is necessary is that
one of the two charge components be moving. This is the situation in real wires.
In addition, note that a current moving to the right could correspond to posi-
tive charges moving to the right or negative charges moving to the left.) As
soon as a dependence on time is included, the sources of electric and magnet-
ic forces become more complicated.

The electric field, at least as it is set up by electric charges (*Fig. 1-18), is as-
sociated with conservative forces. Therefore, there is a potential energy, a func-
tion of position, for these electric forces. This potential energy is that of a (test)
charge in the presence of some given distribution of charge that sets up the
field, and by dividing out the test charge, we are left with something that de-
pends only on the charge distribution, just as the electric field does. We refer to
this quantity as the electric potential, and it is given by

r
V() = —/: E-df + V(%,). (1-51)
Ip
As with potential energy, we are free to choose the location ¥, where the po-
tential is zero, typically at infinity. Generally speaking, the potential is positive
near positive charges and negative near negative charges.

The fields represent more than a simple way to summarize the forces: The
fundamental laws of electricity and magnetism can be formulated in terms of
them. The most important of these laws are known as Maxwell’s equations,
after James Clerk Maxwell, who formulated them in 1867. The four Maxwell
equations describe the behavior of electric and magnetic fields, which are as-
sociated with electric charges and electric currents. The equations are as follows:

1. Gauss’ law for electric fields:

ff E-dA = 890 (1-52)

closed surface

Here, Q is the net electric charge (the algebraic sum of the positive and neg-
ative charges) contained within the closed surface over which the electric
field is integrated, while g, is a constant called the permittivity of free space.
This constant is associated with the units of charge. The meaning of the sur-
face integration is as follows: dA is a surface element that is oriented outward
from the closed surface, perpendicular to it. The integral is known as the
electric flux through the surface; although the flux is in this case over a
closed surface, it is a concept that has meaning even when the surface is not
closed. While Gauss’ law holds even when a dependence on time is present,
it is useful to note that in static situations it is equivalent to Coulomb’s law
for the force between charges, which, in the context of the electric field and
for a point charge g, takes the form

o (1-53)
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® Figure 1-18 The electric
field due to a positive point
charge points away from the
charge and falls as 1/+*, where
7 is the distance from the
charge.



e Figure 1-19  Ampére’s law
relates the integral of the mag-
netic field around a closed loop
to the current through the loop
and the rate of change of the
electric flux crossing a surface
spanning the loop. A right-
hand rule is involved.

Here, r is the distance from the point charge. (Recall that the force on a test
charge is the electric field times the magnitude of the charge.) From
Coulomb’s law, we note that electric fields point away from positive charges
and toward negative charges.

. Gauss’ law for magnetic fields:

B-4A =0. (1-54)
closed surface

In this case, it is the magnetic flux through a closed surface that is involved.
The fact that it is zero means that magnetic fields trace out closed loops. As
far as we know, there are no analogues of electric charges for magnetic fields.
Although we know of no deep reason that forbids such analogues, called
magnetic monopoles, they simply have never been detected.

. The generalized Ampere’s law relates magnetic fields to the currents and

changing electric fields that produce them by the equation

— _§ d — —
fB - ds = ‘LL(}I + MDSOE /]E - dA. (1_55)

surface

The left side of this equation is a line integral around a closed loop
(eFig. 1-19). If one breaks the closed loop into tiny segments, then the line
element 48 is a vector of length ds pointing in the direction followed by the
loop. This direction, clockwise or counterclockwise, sets information for the
quantities on the right-hand side of the equation. The quantity I is the elec-
tric current—the rate at which charge passes—through the closed loop. The
second term on the right contains a surface integral that is the electric flux
through the surface—any surface—that spans the loop. This term is known
as the Maxwell displacement current term, after Maxwell, who noted that
the meaning of the electric current passing through the loop is ambiguous
without this second term. The direction of positive current, or of positive

Surface
spanning
loop

Closed loop
around
current I



flux (meaning positive area elements dA in the surface integral), is defined
by a right-hand rule: Curl the fingers of the right hand in the direction in
which the loop is followed, and the right thumb defines the positive direc-
tion. Finally, a new constant, u, appears here, the permeability of free space.
This constant is associated with units of current and the strength of mag-
netic forces. The generalized Ampere’s law pinpoints the origins of mag-
netic fields: currents or changing electric fields.

—_ _’7__d_ —). 3
fﬁ-ds— dtffB dA. (1-56)

surface

4, Faraday's law:

Here, as in the generalized Ampere’s law, a loop integral occurs, this time
over the electric field; conventions about directions are the same as for Am-
pere’s law. On the right-hand side, we see the rate of change of magnetic
flux for any surface spanning the loop that appears on the left-hand side.
Faraday’s law describes how a changing magnetic flux can generate an elec-
tric field, as do electric charges (by Gauss’ law). This electric field is quite dif-
ferent from the field generated by charges, however, because it can form
closed loops, while the electric field generated by charges must begin or end
on those charges. The electric field described by Eq. (1-54) generates its own
secondary magnetic field by the generalized Ampeére’s law. The minus sign
that appears in Eq. (1-56) implies that the secondary magnetic field has a
magnetic flux that tends to oppose the original change in the magnetic flux;
in this form, the law is also known as Lenz’s law. Note the similarity be-
tween Faraday’s law and the generalized Ampere’s law. If magnetic
monopoles existed, then one might expect a term in Faraday’s law analo-
gous to the electric charge in Ampeére’s law, representing the movement of
magnetic charges.

To the four Maxwell equations, we add the force laws that describe how
electric and magnetic fields affect charges and currents. The force on a charge
q moving with velocity ¥ in an electric field E and a magnetic field B is given
by the Lorentz force law:

F = g(E + ¥ X B). (1-57)

Recognizing that a current is no more than moving charges, we can sometimes
write the velocity-dependent part of this expression as a force on a length of
wire d € carrying a current element in a magnetic field. We then have

dF = 1d€ x B. (1-58)

The net magnetic force on a wire of finite length is found by integrating elements
like those of Eq. (1-58).

By adding (integrating) the magnetic force on a succession of wire elements,
we can find forces on finite wire segments. A particularly important example
is the case of a current loop (*Fig. 1-20). If such a loop is placed in a uniform
magnetic field B, there is no net force, but there is a torque that tends to twist
the loop. This torque is given by

= & X B. (1-59)
The magnetic moment z has magnitude [A, where [ is the current carried in

the loop and A is the area of the loop. The direction of g is defined by a right-
hand rule, as in *Fig. 1-19. Thus, the torque tends to rotate the loop so that
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e Figure 1-20 A current loop
placed in a magnetic field un-
dergoes a torque. In the figure,
the loop is placed at an angle to
a constant magnetic field. The
magnetic moment points in a
direction perpendicular to the
loop, and the torque points in a
direction that lies in the plane
and is perpendicular to the
magnetic field.

the magnetic moment is parallel to B. When it is placed in the field, the loop
has a potential energy that is a minimum when & and B are aligned, namely,

Uu=-g-B. (1-60)

The fact that electric and magnetic fields are associated with forces means
that they are also associated with energy. In other words, the fields themselves con-
tain energy. In a region of space with permittivity &; and permeability u, where
the electric field has magnitude E and the magnetic field has magnitude B, the
energy density, or energy per unit volume, is

u= LBz -+ 130E2.
29 2

The presence of matter has an effect on Maxwell’s equations that can be
accounted for in a direct way. The mixtures of moving charges that constitute
matter react to the presence of fields and modify those fields. How they do so
depends on how the atoms form that matter. For our purposes, we can divide
materials into several classes. Insulators have the property that electric
charges—either those supplied from within the atoms that make up the mate-
rial or those introduced from the outside—cannot move through them very
easily. At most, the charges within individual atoms can move from side to side
within the atom. Conductors have the property that, in effect, electrons move
freely within them. These materials are bulk metals; the electrons, which are also
known as valence electrons, come from the very atoms that make up the con-
ductor. Semiconductors lie somewhere between these two groups.

For insulators in the presence of an external electric field, the atoms align
so that the electric field within the material is diminished (eFig. 1-21). The ef-
fects of insulators, also known as dielectrics, can be summarized by replacing
gy by & = ke, where «, the dielectric constant, is greater than unity. Conductors
react much more dramatically: The charges within them move until the electric
field within is canceled, at least if the field is not dependent on time. Materials
also can be classified according to their magnetic properties. The constant ug is
replaced by a modified constant u in magnetic materials. The most important
class of magnetic materials is known as ferromagnetic; these materials pro-

(1-61)



o Figure 1-21 When an insu-
lator is placed in an external
electric field, dipoles align to
produce a field that partially
cancels the external field, so
that the net field within the in-
sulator is less than the external
field. +

‘Fm‘

duce a magnetic field on their own. The source of this field is the alignment of
atoms, which, by virtue of the current loops formed by the circulating charge
of the atomic electrons, themselves act like tiny magnets.

Other electric properties of materials are of importance in understanding
electric circuits. Ohm'’s law describes how currents in a piece of conducting ma-
terial are formed when an electric field is maintained across the material by a
battery or its equivalent:

V =IR. (1-62)

Here, V is the potential difference from one end of the wire to another. The pro-
portionality constant R is the resistance, and when it is independent of V, we
say that Ohm'’s law applies, or that the material is ohmic.

1-8 Electromagnetic Waves and Light

Taken together, Maxwell’s equations imply two connected wave equations, one
for the electric field and one for the magnetic field. As we shall see shortly,
Maxwell recognized that the waves described by these equations had the right
speed to represent light, and this understanding, together with the German
physicist Heinrich Hertz’s generation and detection of these waves in a direct
electromagnetic context, closed a major chapter in the history of science.

The 17th century was rich in optical discoveries, beginning with those of
Willebrord Snell, who quantified refraction, the bending of light as it propagates
from one medium to another. Somewhat later, Francisco Grimaldi observed—
and named—the phenomenon of diffraction, the bending of light as it goes past
a barrier. Diffraction is manifested in the fact that light going through a narrow
slit is spread on the other side and that a shadow has no perfect edge. This phe-
nomenon had also been noted by Robert Hooke, who suspected that it might
indicate the wave nature of light. In the second half of the century, Olaf Roemer
made the first quantitative determination of the speed of light. He compared
the calculated and the observed times of the eclipses of Jupiter’s satellites.



The difference between these two times was due to the fact that light does not
propagate with an infinite speed. We see the light after an event—the eclipse
in this case—has taken place.

By the first half of the 17th century, Pierre de Fermat had conjectured the
correct law of light propagation, namely, that light propagates between two
points along the path that minimizes the time it takes to make the trip. Some
decades later, Newton and Huygens each elaborated rather different ideas about
the nature of light, although Newton’s ideas were more subtle and complex
than his followers and successors acknowledged. They assumed that Newton
had in mind a simple “particle” theory of light, in which indivisible “atoms” of
light moved in straight lines and were subject to the effects of gravitation. But
Newton also investigated the colors seen in thin layers, such as those of soap
bubbles. He noted that if one placed a slightly convex lens on a flat piece of
glass such that the surfaces were not quite in contact, brilliantly colored rings,
called Newton's rings, would be observed. This did not seem explicable by the
propagation of particles, and indeed, Newton referred to light propagation in
this effect as being in “fits” of reflection and transmission, which one might
take to describe the motion of a longitudinal wave like a sound wave. Newton
also knew about certain polarization phenomena—the fact that certain crys-
tals will transmit light with various intensities, depending on how their axes are
oriented—but he attributed these phenomena to the notion that his atoms of
light had particular shapes.

At about the same time that Newton was doing his work, Christian Huy-
gens developed a wave picture of light. The full generality of his construction
was exploited only in the beginning of the 19th century, but Huygens was able
to explain refraction using it. The idea is that when the leading edge of the
wave hits, say, the denser medium, it is slowed down, and the wave is turned
around this point as the faster moving portion of it catches up. This is a phe-
nomenon you can observe as water waves hit a beach. ,

During the next century, the particle theory became the dominant theory
of light propagation. Nonetheless, by the beginning of the 19th century, the
next great period in the history of optical discovery, the particle theory of light
had been swept aside in favor of the wave theory, chiefly due to the work of
Thomas Young and Augustin Fresnel. The latter used the Huygens construction
to give a complete theory of diffraction, including the discovery that in the cen-
ter of any circular shadow there is a bright spot.

In Young’s most famous experiment, early in the 19th century, the distance
between two pinholes that supply coherent light that can interfere on a screen
was set to be about a millimeter. The screen was about a meter away from the
pinholes. As the pinholes are made smaller, the two patches of light they make
on the screen get larger due to diffraction, and eventually they will overlap. At
this point, an array of light and dark bands—the interference pattern of the two
sources—appears. Apparently, these phenomena could be explained only if
light was described by a wave. Using the conditions for constructive interfer-
ence described in Section 1-4, Young could even determine the wavelength of
the light. Such wavelengths A are quite small by ordinary standards, on the
order of several hundred nanometers.

This historical diversion brings us back to Maxwell’s equations. For the
electric field, the presence of a set of charges oscillating in the x-direction allows
us to generate a wave equation of the form

E. = oo Efi E,. (1__63)
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o Figure 1-23 The electromag-
netic spectrum. All these waves
have the same structure, deter-

mined by Maxwell’s equations.
Only the wavelengths differ.

If there are no mechanisms in these media that destroy the waves, then the
media are transparent, and in line with what we stated in Section 1-7, the
only change is that &, is replaced by & and y is replaced by p. This means that
the speed of light changes to ¢’ = ¢/n, where the quantity 7 is the index of
refraction of the material. Transparent materials have u = po, so that
n = Vk, where « is the dielectric constant, a quantity greater than unity.
The reduced speed of waves in such media neatly explains refractive effects.

o The fact that the phase of the magnetic and electric fields in these waves is
the same is a general feature. When the electric field is a maximum, so is the
magnetic field; when one field is a minimum, so is the other.

o An additional restriction on the relative size of E; and By, and hence on the
size of E and B, in electromagnetic waves is that E = ¢B.

s The electric and magnetic fields are perpendicular to the direction of prop-
agation of the wave and to each other, so that electromagnetic waves are
transverse. This is also a general feature.

Energy and Momentum Transport

Equation (1-61) shows that there is energy in electromagnetic waves, and the
energy density in a region where they propagate is

= %BO(EZ + ?B%) = g2 (1-67)
Here we have used the relation between E and B in the wave, a relation that tells
us that the energy density is equally split between the electric and the mag-
netic components of the wave. Moreover, the energy density is itself a propa-
gating wave—it contains the factor cos®(kz — wt + @), which corresponds to
something propagating with speed c. In other words, electromagnetic waves
transport energy, and the speed of transport is the speed of light. The rate at
which this energy arrives at a surface perpendicular to the direction of propa-
gation of the waves is the energy flux, and it is given by the product cu. The
energy flux can be more fully characterized by a vector that is along the di-
rection of propagation—that is, proportional to E X B—and of magnitude cu.
This vector is known as the Poynting vector,

S = (E x B)/uo. (1-68)

Another quantity used to measure energy transport is the intensity I, defined
as the time average of the energy flux. Because the average of the cosine squared
is1/2,I =5/2.

The fields of an electromagnetic wave exert a net force in the direction of
propagation on a charge of any sign. This shows that the wave also transports
momentum to the charge when the wave hits it. The momentum per unit vol-
ume, or momentum density, carried by the wave is S/ One consequence of
this fact is a pressure is exerted on a material when an electromagnetic wave is
incident on it. This radiation pressure is given by 2u for a perfectly reflecting sur-
face and by u for a perfectly absorbing surface.

Polarization

Although the electric field lies in a plane perpendicular to the direction of prop-
agation of an electromagnetic wave (sFig. 1-22), there is nothing that picks a di-
rection in that plane. The particular direction chosen specifies the polarization
of the wave. It is possible to measure this direction, as well as to “filter” the :

waves so that only certain directions are passed out of a beam that consists of




