2.3 Sound

Doppler Effect. Shock Waves

Doppler Effect

Doppler effect- the shift in frequency of a wave where the source and observer are moving relative to one another.

Two different cases for sound:

Observer moving - source stationary Source moving- observer stationary.

Observer moving toward a Stationary source (Relative Velocity Increases)

•Relative velocity of wave (v_o + v) increases.

•Frequency increases

$$f_o = \frac{V + V_o}{\lambda}$$
 $= \frac{V + V_o}{V} f_s = (1 + \frac{V_o}{V}) f_s$

Observer moving away from a stationary source (Relative velocity decreases)

Relative velocity of wave (v-v_o) decreases. Frequency decreases.

$$f_o = \frac{v - v_o}{\lambda_s}$$
 $= \frac{v - v_o}{v} f_s = (1 - \frac{v_o}{v}) f_s$

Source moving toward a stationary observer (wavelength in the medium decreases)

•When the source is moving the wavelength of the wave in the media is changed

Source approaches observer A
Wavelength decreases and frequency heard by observer A increases
Source moves away from observer B.
Wavelength increases and frequency heard by observer B decreases.

Source Moving Toward observer A

•Wavelength decreases

$$\lambda = \lambda_s - v_s T$$

•Frequency increases

$$\boldsymbol{f}_{o} = \frac{\boldsymbol{v}}{\boldsymbol{\lambda}_{s} - \boldsymbol{v}_{s} \boldsymbol{T}_{s}} = \frac{\boldsymbol{v}}{\boldsymbol{v} \boldsymbol{T}_{s} - \boldsymbol{v}_{s} \boldsymbol{T}_{s}}$$

$$f_o = \frac{v}{v - v_s} f_s$$

Source Moving Away from observer B

•Wavelength increases $\lambda = \lambda_{_S} + \nu_{_S} T$

$$\lambda = \lambda + V T$$

•Frequency decreases
$$f_o = \frac{v}{\lambda_s + v_s T_s} = \frac{v}{v T_s + v_s T_s}$$

$$f_o = \frac{V}{V + V_s} f_s$$

Observer and source moving

source
$$v_s$$
 v_s v_o observer v_o v_o observer

. The frequency increases when the source and observer are moving toward

Observer and source moving

• The frequency decreases when the source and observer are moving away

Question

- A fire truck is going down the street toward a stationary observer sounds an alarm with a frequency f_s. Which of these is true of the frequency heard by the observer.
- A. The frequency is higher because the wavelength of the sound in air is lengthened.
- B. The frequency is higher because the wavelength of the sound in air is shortened.
- C. The frequency is higher but the wavelength of the sound in air is the same as for a stationary truck.
- D. The frequency is higher because the speed of sound in air is faster.

Example

A fire truck is approaching an observer with a speed of 30 m/s. The siren has a frequency of 700 Hz. What frequency does the observer hear as the truck approaches? speed of sound 340 m/s

Two trains are approaching each other each moving at 34 m/s. One train sounds a whistle at a frequency of 1000 Hz. Find the frequency

Approximate solution at low speeds.

Source moving toward observer.

$$f_o = \frac{v}{v - v_s} f_s = \frac{v}{v(1 - \frac{v_s}{v})} f_s = \frac{1}{1 - \frac{v_s}{v}} f_s$$

At low speed v_c <<v

$$f_o \approx (1 + \frac{v_s}{v})f_s$$

Using the relation

$$\frac{1}{|-x|} \approx 1 + x$$
 When x<<

Approximate solution for two trains approaching

$$\begin{split} &f_o = \frac{v + v_o}{v - v_s} f_s = \left(\frac{v + v_o}{v}\right) \left(\frac{v}{v - v_s}\right) \! f_s \cong \left(1 + \frac{v_o}{v}\right) \! \left(1 + \frac{v_s}{v}\right) \! f_s \\ &f_o = \left(1 + \frac{v_s}{v} + \frac{v_o}{v} + \frac{v_s v_o}{v^2}\right) \! f_s \cong \left(1 + \frac{v_s}{v} + \frac{v_o}{v}\right) \! f_s \\ &f_o - f_s \cong \left(\frac{v_s}{v} + \frac{v_o}{v}\right) \! f_s \end{split}$$

- The shift in frequency is approximately proportional to the ratio of the train velocities to speed of sound as we found in the previous example.
- This is a good approximation when the train velocities are slow compared to the speed of sound.
- This is a good approximation for the Doppler shift of electromagnetic waves.

Doppler shift of Electromagnetic waves

- Electromagnetic waves are also shifted by the Doppler effect.
- Since EM waves travel in a vacuum the equations governing the shift are different.
- The same shift is observed for moving source or moving observer.
- For motion with speeds less than the speed of light the relation is the same as for the approximate shift for sound waves when u<<v.

$$f = f_s(1 \pm \frac{u}{c})$$

u = relative velocities of source and observe.

c = speed of light

Positive sign when approaching

Negative sign when moving away.

Doppler Radar

Doppler radar is used to determine the speed of a car.

The beat frequency between the Doppler shifted frequency and the initial frequency is measured to determine the speed of the car.

$$\begin{split} f_1 &= f_s \; (1 + u/c) \\ f_2 &= f_1 (1 + u/c) = f_s \; (1 + u/c)^2 = f_s \; (1 + 2u/c + (u/c)^2) \\ \text{beat frequency} &= f_2 - f_s = 2 \frac{u}{c} f_s \end{split}$$

Question

A Doppler shifted radar beam is reflected off a car going 30m/s coming directly toward a stationary police car. If the frequency of the radar is 1.00×10^{10} Hz. The beat frequency of the reflected beam with the stationary source is. (speed of light is 3.00×10^{8} m/s)

A. 1x10² Hz

 $B.2x10^2\,Hz$

C. 1x10³ Hz

D. 2x10³ Hz

Shock wave

At super-sonic speed the pressure amplitude is large

M < 1

N/**_**1

M>1

Mach number

 $M = \frac{U}{V}$

Mach angle θ

 $\sin \theta = \frac{v}{u}$

An observer feels a shock wave and sees that the supersonic jet is at an angle of 20° above the horizon flying in the horizontal direction. What is the speed of the jet (take the speed of sound to be 340 m/s)